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ABSTRACT

A primitive equation model is run to investigate generation and instability mech-

anisms in the Leeuwin Current. The current is generated by the model using a combi-

nation of density forcing from the climatological Indian Ocean thermal structure, the

influx of warm low salinity water from the North West (NW) Shelf, and the

climatological wind stress. The current thus generated is compared with observations

taken during the LeeUvvin Current Interdisciplinary Experiment (LUCIE). In the ab-

sence of the NW Shelf water, which corresponds to the austral spring and summer (low,

wind forcing is dominant at the equatorward end of the domain and geostrophic flow,

driven by the Indian Ocean thermal gradient dominates at the poleward end. "1 his leads

to a weak coastal upwelling regime with equatorward and offshore flow at the

equatorward end. Further poleward, the stronger Indian Ocean forcing establishes a

poleward surface current and equatorward undercurrent which accelerates poleward.

into the prevailing wind. The inclusion of NW Shelf waters, typical of the austral fall

and winter seasons, completely dominates the wind forcing at the equatorward end of

the model. The effects of the NW Shelf water weaken away from the source region but

they continue to augment the Indian Ocean forcing, resulting in a stronger flow along

the entire coastal boundary. The current generated by the model compares well with

available observations. The current also has significant mesoscale variability. An anal-

ysis of the energy transfers in the period during which eddies are generated shows

barotropic instability to be dominant over baroclinicity in the current forced by the In-

dian Ocean thermal structure. The addition of wind forcing adds to the barotropic in-

stability and leads to an earlier development of eddies. The NW Shelf waters add strong

baroclinicity, which weakens poleward, to the current. They also locally increase the

barotropic instability near their source. Several scales of eddies are found to be domi-

nant. The forcing by the Indian Ocean and wind stress leads to eddy growth on scales

around 385 km. With the inclusion of the NW Shelf waters, the wavelengths associated

with mesoscale variability are around 160 km and 330 km after 160 days, consistent with

available observations.
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I. BACKGROUND

A. INTRODUCTION

The Leeuwin Current is a surface (low of warm, low salinity, tropical water,

poleward along the west coast oC Australia, then eastward into the Great Australian

Bight (Figures 1 and 2). It appears to have its source in the northeast Indian Ocean,

and extends to Australia's southern coastal waters. Godfrey et al. (1986) reported de-

tecting the current as far east as Portland (142°!:) although based on water mass analy-

sis, Rochford (I9S6) argues that its eastward limit is 130°E.

The current is narrow ( < 100 km wide), shallow (generally < 300 m), has an under-

lying equatorward (low and is strongly seasonal in nature. Holloway and Nye (19S5)

showed that the maximum flow along the southern portion of the North West Shelf

(NW Shelf) occurred from February to June and that it was not enhanced by the

strengthening southeast trade regime during that period. Observations from the

Leeuwin Current Interdisciplinary Experiment (LL'CIF) reported by Boland et al. (1988)

show that the maximum poleward (low at Dongara (29.5°S) occurs from April to June

whilst further south at Cape Mentclle (34°S) it occurs in June and July. Rochford ( 1986)

concludes that the Leeuwin Current reaches its eastward limit south of Australia in July.

The Leeuwin Current differs markedly in its characteristics, and hence presumably

in its associated dynamics, from currents found in other eastern ocean regions. The

other major eastern boundary currents, i.e., Peru, California, Benguela and Canary, are

characterized by climatologically weak (< [0 cm s~ l
) surface flow toward the equator,

cold upwelled water at the surface, shallow ( < 30 m depth) thermoclines and high bi-

ological production (Parrish et al., 1983). In contrast, the Leeuwin current has a

poleward surface flow which exceeds 1.5 ms~ l at times (Cresswell and Golding, 1980;

Godfrey et al., 1986), anomalously warm water, downwelling, a deep (> 50 m)

thermocline (Thompson, 1984) and low fish production. The other currents arc part of

the subtropical anticyclonic gyres which are driven primarily by the anticyclonic wind

fields, and variations in current strength are highly coherent with variations in local wind

stress. With such markedly different features, the Leeuwin Current may be expected to

depart just as markedly in its generation mechanisms and dynamic features.
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Figure 1. Leeuwin Current: Geographical locations referred to in text.

B. OBSERVATIONAL STUDIES

1. The Large Scale Circulation

Andrews (1977) provides an excellent synopsis of the large scale circulation in

the area. A large semi-permanent trough centered near 39°S, 110°E extends northeast

towards 30°S, 114.8°E. West of the trough the northeastward West Australian Current

advects cool, saline water toward the coast. This current becomes more zonal



equatorward creating a confluence between 39°S and 31°S. The zonal onshore How then

extends north to 15°S.

Superimposed on this large scale circulation is the seasonal poleward (low of the

Leeuwin Current. Thus, there is a zonal inflow into a meridional boundary current

poleward of the North West Shelf area (Figure 1), becoming even more complex south

of 31°S, where the West Australian Current is confluent, cyclonic and has an

equatorward component, before turning sharply poleward, transporting its waters par-

allel to the coastal How. It is not surprising therefore that temporal and spatial vari-

ability due to mesoscale features is at a maximum near 31°S to 32°S (Andrews, 1977).

2. A Poleward Flowing Coastal Current

The earliest documentation of the characteristics of a poleward flowing current

was by Saville-Kent (1897) following studies of the marine fauna of the Abrolhos Islands

(28.5°S). Anomalously warm water was found around the Islands but not on the

mainland coast 50 miles to the east where temperatures were some 7
CC cooler. This led

to a suggestion that the water must be transported to the region. Dakin (1919) also

noted that the temperature difference between the Abrolhos Islands to the mainland was

greatest in the winter.

Rochford (1969) used drift bottles to ascertain that the poleward flow in winter

extended to the south of Rottnest Island (32°S) and that a flow reversal occurred in

summer. The reversal was also apparent in salinity records for the southwest coast of

Australia. The salinity variation was over twice that attributable to evaporation and

precipitation; hence the salinity became an effective tracer of the flow regime in the re-

gion. Kitani (1977) observed low salinity water at 32°S in November 1975 which showed

that the occurrence of tropical water was not confined to the austral winter. The east-

ward continuation of the poleward flow into the Great Australian Bight was inferred by

Colborn (1975) from temperature data, and by Markina (1976) from plankton data,

which further emphasized its strong signal.

The poleward current was named the Leeuwin Current by Cresswell and Gold-

ing (1980). This was in honor of the first Batavia-bound Dutch vessel to explore the

southwest of Australia.

3. Drifting Buoy Studies

The deployment of satellite tracked drifting buoys off Western Australia from

1975 to 1977 added a new dimension to the data collected on the circulation features.

Cresswell and Golding (1979) illustrated the spatial and temporal complexity of the

current in charts of buoy tracks and showed clear evidence for the existence of mesoscale



eddies on the western side of the current. The buoys were observed to accelerate as they

entered the current and slow again when departing, providing evidence for a high speed

core current which was measured at up to 1.7 in. sec from buoy positions.

•4. Satellite Remote Sensing Studies

Infra-red imagery of the eastern Indian Ocean dates back to the mid 1970s but

the analysis of its flow characteristics from these images is more recent, coinciding with

the introduction of the Advanced Very High Resolution Radiometer (AVHRR) to

NOAA platforms in 1978. Its high spatial resolution (~lkm) and temperature discrim-

ination (<0.1°C) allows high definition images to reveal the temperature contrasts be-

tween the different currents and cyclonic and anticyclonic eddies. Figure 2, from Pearce

and Cresswell (1985), shows a large wedge of warm water in the northeast Indian Ocean

being funnelled into a narrow current near North West Cape, then moving south along

the shelf and slope until reaching Cape Leeuwin, where it abruptly swings eastward and

extends across the Great Australian Bight. Mesoscale features can be seen olf Perth,

and filament-like features can be seen off the south coast.

5. Mesoscale Features

The existence of eddies in the Eastern Indian Ocean was first postulated by

Wyrtki (1962). Using dynamic height calculations relative to 1750 decibars he showed

a strong semi-permanent eddy present near 32°S 110°E with cyclonic circulation above

the reference level and anticyclonic below. Analysis by Hamon (1965) suggested a dou-

ble eddy structure in the region 30° to 32°S, east of 107°E during the austral winter pe-

riod of late April to November. In a subsequent study Hamon (1972) found little

seasonal variation in dynamic height anomalies in the same area, although a tendency

toward greater variability during the months from August to November was noted.

Andrews (1977) investigated mesoscale features in the region and observed

nearly zonal planetary Rossby waves in the West Australian Current and nearly

meridional coastal waves in the coastal current south of 15°S where zonal inflow oc-

curred. The interaction of the two wave types, particularly in the vicinity of the large

trough resulted in meandering in both currents. No clear ring-like features (i.e. closed

isopleths of velocity and temperature at several depths) were apparent to Andrews in his

study although some mixed layer and surface temperature rings were analyzed.

Andrews (1983) attempted to reconcile the apparently contradictory findings of

Hamon and Cresswell (1972) and Golding and Symonds (1978) who reported mesoscale

structures with length scales of 200-300 km and 140 km, respectively. He concluded that

both length scales can be present with the shorter at wavelength X = 157 + 25 km as-



atwi^f

PERTH

CRPE NftTgRflU.STE ^.

CRPE LEEUUIN ;

'

V S* • ESI*

Figure 2. AVHRR image of Leeuu in Current region: (after Pearce and Cressvvell,

1985).



I

liv- ,\

|":a~X /-^ !TV*V. ,.„

m ffnm

*rnn |<;

BUOY 1 HACKS
MARCH 23 - JUNE 3. 1976.

en rniM SMflf

• nuo* *

•• Duo* »

•• euo» c

• euo* o
•• illO» t

• euor r

M»nc>l JO '

.
-^

I, «rnii 1

1

u« ni;ii 7j_
110 E

Figure 3. Tracks of buoys inlluenced by tbe Leeimin Current: (alter Crcsswell,

1980).



sociated with Rossby deformation scale eddy structures in the strong poleward flow over

the slope and the longer at ). = 309 + 28 km associated with the weaker, large scale.

West Australian Current offshore. The inshore regime of cyclonic rings is clearly at a

scale consistent with the trajectories of Lagrangian buoys (Figure 3). While Andrews

suggests baroclinic instability in the poleward current as a likely generation mechanism,

with both first and second mode rings identified, no explanation is offered for the larger

offshore scale.

C. LEELTVVIN CURRENT MODELING STUDIES

Thompson and Veronis (1983) were the first to model the Leeuwin Current and

suggested that local winds on the North West Shelf could generate the current. This

theory was refuted by the current meter observations of Holloway and Nye (1985). It

was also rejected by Thompson (1984) who proposed instead an alongshore steric height

gradient as the primary forcing mechanism with the winter deepening of the mixed layer

offsetting the effects of the equatorward wind stress. Godfrey and Ridgeway (1985a)

quantified the contributions of the alongshore pressure gradient and equatorward wind

stress and strongly supported Thompson's (1984) finding. They further proposed that

now from the Pacific Ocean through the Indonesian Archipelago to the northeast Indian

Ocean could be responsible for the large steric height gradient, a feature which makes

the Leeuwin Current unique among eastern boundary currents.

McCreary et at. (1986) rejected the throughflow as being a primary forcing mech-

anism and proposed that thermohaline gradients were responsible for the alongshore

pressure gradient. Their model results showed a poleward surface current and

equatorward undercurrent comparable in strength to observations, but no mesoscale

features were shown. Kundu and McCreary (1986) examined the throughflow theory

separately and produced a weak poleward flow and concluded that the throughflow was

a secondary forcing mechanism.

Thompson (1987) used an analytic model of the Leeuwin Current to investigate why

the flow is poleward and why no upwelling occurred, despite the upwelling-favorable

wind. Thompson (1987) concluded that the wind-mixed (or surface Ckman) layer is deep

enough to reduce the effects of wind forcing below the level of the forcing due to the

poleward pressure gradient.

Gentilli (1972) suggested that a seasonal (austral autumn and winter) throughflow

could be isolated in the northeast Indian Ocean during the austral summer and thus

could provide a source for the subsequent Leeuwin Current generation. This theory is



supported by the satellite image of Pearce and Cresswell (1985) in Figure 2. The image

is consistent with a large wedge-shaped mass of warm water od" northwest Australia

funnelling in to a poleward current. Weaver and Middleton (1989) used a Bryan-Cox

ocean general circulation model to investigate the contributions to the Leeuwin Current

from both the alongshore density gradient and the warmer, fresher North West Shelf

waters. The model, which includes simple coastal geography and topography, produced

a realistic Leeuwin Current, but the current lacks mesoscale variability. Weaver and

Middleton (1989) concluded that the Leeuwin Current is a baroclinic current driven by

the alongshore density gradient. They also believe the current is strengthened locally,

by barotropic enhancement, in the vicinity of the source of the North West Shell" waters.

D. THEORIES FOR THE LEEUWIN CURRENT

Despite extensive modeling studies throughout the 1980s, a complete explanation

for the Leeuwin Current and its different features in comparison with other eastern

boundary currents remains outstanding. A synopsis of current theories is presented be-

low.

1. Generation

There is general agreement (e.g., by Thompson, McCreary, Godfrey, Cresswell)

that the Leeuwin Current is generated by a meridional pressure gradient which over-

whelms the opposing equatorward wind stress. The wind forcing effects are diminished

by deep mixed layers (Thompson, 1987), possibly formed in response to a strong heat

flux out of the ocean, which is a feature unique to the Leeuwin Current among eastern

boundary currents (Hsiung, 1985).

The source of the Leeuwin Current water is predominantly gcostrophic inflow

from the west (McCreary et ai, 1986; Thompson, 1987), and is augmented by a source

from the North West Shelf (Kundu and McCreary, 1986; Weaver and Middleton, 1989),

possibly having its origin in the Pacific Ocean (Godfrey and Ridgeway, 1985). The in-

flow of the North West Shelf water is consistent with the warm, low salinity signature

of the Leeuwin Current surface waters.

The results of Weaver and Middleton (1989) suggest that both the poleward

gradients of temperature and salinity are sufficient to establish a pressure gradient strong

enough to support the observed flow. Godfrey (1988) proposes enhancement of this

pressure gradient by the build up of warm fresh water near Indonesia due to the action

of zonal winds in the equatorial Pacific. He further proposes a feedback loop in which:

(I) the advection of warm water poleward by the Leeuwin Current causes high latitude



heat losses; (2) this enhances the alongshore pressure gradient, and; (3) drives the

Leeuwin Current.

2. Seasonal Variation

The seasonal variation in the Leeuwin Current is addressed by Godfrey and

Ridgeway (1985). They attribute its marked variability to changes in steric height, driven

by monsoon winds to the north of Australia, coupled with the local variation in wind

stress. In addition, they note the seasonal throughflow of warm tropical water proposed

by Gentilli (1972). To these theories we must add the effect of seasonal variations in

mixed layer depth which are central to Thompson's (1987) model of the current.

3. Mesoscale Variability

One of the major gaps in Leeuwin Current research is in the area of the complex

eddy fields found in the current. Whilst observational studies (Ilamon and Cresswcll,

1972; Golding and Symonds, 1978; Andrews, 1977, 1983) reveal the nature and charac-

teristics of the mesoscale features, no modeling studies have successfully produced eddy

fields which would allow analysis of their generation mechanisms.

E. OBJECTIVE OF THE THESIS

The objective of the thesis is to use a full primitive equation (PL) numerical model

to investigate the generation and stability of the Leeuwin Current. The roles of the In-

dian Ocean temperature field. North West Shelf water and local wind stress in generating

the current will be investigated. The model generated current will be compared with

LUCIE data and the resulting flow analyzed for energetics and stability. The use of a

multi-level PE model with active thermodynamics and appropriate choices for diffusion

parameters should result in the first eddy resolving modeling study of the Leeuwin Cur-

rent and its eddy fields.

Initialization will be similar to that used by Weaver and Middleton (1989), but, with

the inclusion of wind forcing, a more complete picture of the generation mechanisms

should result. The use of a straight meridional vertical wall for the coastline and the

absence of shelf and bottom topography should not severely limit this process oriented

study as the coast is generally straight over the domain (22°S to 34°S) and, as Weaver

and Middleton note, their modeled current is centered near the shelf break. This study

should confirm and extend previous modeling studies and provide a firm basis for further

research.



II. MODEL DESCRIPTION

A. MODEL EQUATIONS

The numerical model is that used by Batteen et al. ( D89). It is a ten-level, PI: model

for a baroclinic ocean on a /?- plane, based on the hydrostatic. Boussinesq, and rigid lid

approximations. The governing equations, written in standard notation, are as follows:

d\t

IT = 77 -J7 +A - A«w " + K- 77 + **>)
01

[I]

dv_

dl Po

op

vv
fu- A„V*v + KM-Q + 8M [2]

w

Cz

-H

— +— )d(,

dx ay
[3]

P'=\ pgdC- H

fO

-a

Pgdt* dz [-IJ

p = pq{\ -«(r- 7 ))

^r
a

^
2 r= -^v4r+ /̂/

-^- + eJ + ^T)
cz

[5]

[6]

In the equations, (x,y,z) is a right-handed coordinate system with x toward shore, y

alongshore and z upward. The corresponding velocity components are (u,v,w), t denotes

time, T is temperature, p density and p' the departure of the pressure from its vertical

average. In equations [3] and [4], £ is a dummy variable of integration. Equation [4]

assumes a constant depth averaged pressure of zero which negates the barotropic mode

in this study. The equation of state [5] assumes density that is a function of temperature

only. Justification for this assumption is given in Chapter 3.

1 cS
In [6], Qt

= — — is heating due to solar radiation with
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S = S (R exP( -^ ) + (1 - R) exp( -jr- )). [7]

where S is the downward (lux of solar radiation at the surface, R = 0.62 is the fraction

of solar radiation absorbed in depth z, = 1.5 m leaving (1 — /?) =0.38 to be absorbed

by depth z
2
= 20.0 m (Paulson and Simpson, 1977). The terms <5

fl
(w), ojv) and <5 d(T)

represent the vertical turbulent mixing of zonal momentum, meridional momentum and

heat, respectively, by a dynamic adjustment mechanism which maintains stability in the

water column (Adamcc el al., 1981). Appendix A details other symbols used in the

model equations and provides values for constants used in the study.

The boundary conditions at the surface (z = 0) arc:

^,4^ = [8]
02

w = [11]

and at the bottom (z = - H) are:

a 1

KM— = CD{u
2 + v

2
)T(ucosy - vsiny) [ 1 2]

C V 2 2 -—
KM -r— = CD(u + v ) 2 (ucosy + vsiny) [13]

A'//4L = [14]
az

w = 0. [15]

B. FINITE DIFFERENCING

For the finite differencing, a space-staggered B-scheme patterned after Arakawa and

Lamb (1977) is used in the horizontal. In the vertical, the 10 layers are separated by

constant z levels at depths of 13, 46, 98, 182, 316, 529, 870, 1416. 2283 and 3656 m.
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C. DOMAIN SIZE AND RESOLUTION

The eastern boundary of the model domain represents a straight idealization of the

continental shelf of Western Australia. The model domain is a rectangular area 1280

km alongshore covering latitudes 22° to 34" and extends 576 km olfshorc. Horizontal

resolution of the model is 20 km alongshore and 9 km cross-shore. Comparisons with

numerical simulations made by a higher resolution model (10 km by 9 km) with half the

latitudinal extent showed no significant degradation in the resolution of mesoscale fea-

tures in the coarse grid model; hence the present grid resolution was adopted to enable

coverage of the larger geographical region off Western Australia. To facilitate compar-

ison with other eastern boundary currents (which could be in either hemisphere), model

results will be discussed in terms of alongshore (poleward or equatorward) and cross-

shore (onshore or offshore) flows.

Although Weaver and Middleton (1989) found the presence of a sloping shelf was

necessary to trap the eastern boundary current generated by their model, both coastline

features and topography are omitted from this process oriented study. The inclusion of

coastline features and bottom topography, and an examination of their effects on the

current and eddies, are considered a separate study. The constant depth used in the

model is 4500 m.

D. HEAT AND MOMENTUM DIFFUSION

A biharmonic closure system is used for lateral diffusion of heat and momentum in

preference to a Laplacian closure. Holland (1978) showed that the highly scale selective

biharmonic diffusion acts predominantly on sub-mesoscalcs while Holland and Batteen

(1986) found that baroclinic mesoscale processes can be damped by Laplacian lateral

heat diffusion. As a result the use of biharmonic lateral diffusion should allow mesoscale

eddy generation via barotropic and/or baroclinic instability mechanisms. Coefficient

values are given in Appendix A.

E. WIND FORCING

The incorporation of wind forcing into the PL model is described in Chapter III.

Consistent with the wind band forcing used by McCreary et al. (1987) and Batteen et

al. (1989) all wind forcing is imposed in the interior only and tapered to zero near the

southern and northern open boundaries.

12



F. SURFACE THERMAL FORCING

The total heat (lux across the surface is initially set to zero in all experiments. I he

downward (lux of solar radiation, (S„), is calculated as a function of the solar insolation

at the top of the atmosphere (S'A ) and cloud cover (n) using

5* = 0.95(0. 74 - 0.6n)SA [ 1 6]

(Haney et ai, 1978) The net longwave radiation (Q B ) and sensible {Q s ) and latent heat

{0E ) iluxes are computed from bulk formulas based on cloud cover, wind strength

(| CJ), sea surface temperature (7^) , saturation vapor pressure (es) . and atmospheric

vapor pressure (eA ) for a range of air temperatures (Haney et ai, 1978) using

QB
= 0.985ct(7 5 )

j
[0.39 - 5.0(^)T](1 - 0.6/r

2

) [17]

Qs-PaChCp\Va \{Ts -Ta ) [18]

QE = pACHL\ VA \(0.622/pA)(es - eA ). [19]

Vapor pressures are calculated using the Clausius Clapyron equation

,
, QZ

2353.0

es
=\0" A0S

rA [20]

and using relative humidity (r)

eA = rcs [21]

Values of constants are given in Appendix A. The resulting air temperature, which

corresponds to a value of QN = QB + Qs + QE = S , is then used in the model for all ex-

periments. Any subsequent surface heat flux forcing is therefore a secondary effect of

the changes to sea surface temperature due to the forcing mechanisms being investi-

gated, i.e., forcing due to the wind and/or thermal structure of the ocean.

G. BOUNDARY CONDITIONS

The eastern boundary of the domain, which represents the coast of West Australia,

is modeled as a straight vertical wall and has a no-slip condition imposed. The northern,

southern and western borders are open boundaries which use a modified version of the

radiation boundary conditions of Camerlengo and O'Brien (1980).

13



III. INITIALIZATIONS, FORCING AND EXPERIMENTAL DESIGN

A. INITIALIZATIONS

I. Ocean Thermal Structure

The ocean temperature structure used to initialize the experiments is considered

in two parts with the warmer, less saline North West Shelf waters considered separately

from the Indian Ocean waters.

a. Indian Ocean

The initial temperature data used for the Indian Ocean is presented in Table

1 below for each laver of the model.

Table 1 . INITIAL TEMPERATURE (°C) FOR INDIAN OCEAN
Lati-

tude
Layer

°S / 2 3 4 5 6 / 8 9 10

22 24.0 22.9 21.6 19.2 14.5 09.4 05.9 03.5 02.0 01.0

24 23.3 22.3 20.9 18.6 14.3 09.4 05.9 03.5 02.0 oi.o

26 22.6 21.7 20.3 18.0 14.1 09.3 05.9 03.5 02.0 oi.o

28 22.0 21.0 19.7 17.4 13.9 09.3 05.9 03.5 02.0 01.0

30 21.3 20.4 19.0 16.7 13.6 09.2 05.8 03.5 O2.0 01.0

32 20.6 19.8 18.4 16.1 13.4 09.2 05.8 03.5 02.0 1 .0

34 19.9 19.1 17.7 15.5 13.2 09.

1

05.8 D3.5 02.0 01.0

The temperature data was derived from Levitus ( 19S2). After interpolating between data

points, a vertically integrated temperature for each layer was calculated and applied to

the constant z levels. For computational ease, the data was further smoothed and a

linear gradient fitted to each layer over its meridional extent. Zonal homogeneity was

assumed at all levels as the data shows little variability apart from in the region of the

Leeuwin Current. Slight differences between the final values used for the Indian Ocean

forcing in this study (fable 1) and those of Weaver and Middlcton (1989), since the same

data source is used, are likely due to slightly different vertical integration and smoothing

techniques. A meridional cross section of the domain showing the Indian Ocean tem-

perature initialization is given in Figure 4.
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Figure 4. Indian Ocean temperature initialization: Meridional cross-section

showing initial thermal structure for Indian Ocean forcing.

Salinity values from Levitus (1982) have a range of only 35.6 ± 0.2 psu over

most of the domain in the upper five layers. This range is considered narrow enough to

discount salinity variability so that no compensation is made for the assumption that

density is a function of temperature alone.

b. North West Shelf

To investigate the impact of NW Shelf waters separately from the Indian

Ocean, the NW Shelf waters are initialized separately in the model. As for the Indian

Ocean, the data was again derived from Levitus (19S2) and vertically integrated and

smoothed. Due to the marked contrast in salinity between the water masses of the In-

dian Ocean and the NW Shelf, the NW Shelf waters are given an equivalent temperature

which compensates for variations from a mean salinity of 35.6 psu.
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1 he NW Shelf water is restricted to the upper live layers only so that the

lower layers arc initialized as for the Indian Ocean. When included in the experiments,

the NW Shell' water is treated as a raft of warm water in the inshore equatorward corner

of the model and is linearly smoothed into the surrounding Indian Ocean waters. I he

initial temperature structure of the NW Shelf water is shown in figure 5, where a

meridional cut is taken through the inshore waters showing both the NW Shelf water

and the surrounding Indian Ocean temperature structure. The values used to initialize

the NW Shelf waters are presented in fable 2.
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Figure 5. NW Shelf temperature initialization: Meridional cross-section showing

initial thermal structure for NW Shelf and Indian Ocean forcing.
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Table 2. INITIAL TEMPERATURE (°C) FOR NORTH WEST SHELF

Layer Temperature

1 29.5

2 2S.5

3 26.0

4 20.5

5 15.7

2. Wind Forcing

Monthly wind stress component data was taken from Godfrey and Ridgeway

(1985) and converted back to the cross-shore and alongshore components of the wind

velocity using:

T
v ,2

"*=[(— ) + (
~

) ]
2 [22]

and

tan (

-

[23]

so that

~C~n
cos 9 [24]

CT

sin d U5]

Here, the same choices as used by Godfrey and Ridgeway (1985) for the drag coefficient

(CD = 1.3 x 10~\ after Nelson, 1977) and p — 1.23 x 10 3 are used. The values for wind

stress and the corresponding components of the wind are given in Tables 3 and 4 re-

spectively.
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Table 3. MONTHLY COMPONENTS OF WIND STRESS (dynes cm )

.Ian Mar May Jul Sep Nov

20 ° - 25 °S
T, 0.0 -o.l -0.2 -0.6 -0.1 0.0

T
y

0.7 0.6 0.2 0.1 o.6 1.0

25 ° - 30 °S
T

r
0.0 -0.1 0.0 o.l 0.1 o.O

r
v

1.2 1.0 0.3 o.l 0.5 1.1

30 ° - 35 °S
zx 0.0 -0.

1

0.4 1.5 O.S o.l

T
y

0.8 0.7 0.2 o.o 0.4 0.7

Adapted from Godfrey and Ridgeway (1985)

Table 4. MONTHLY COMPONENTS OF WIND VELOCITY {cm s >)

Jan Mar May Jul Sep Nov

20 ° - 25 °S
u -99 -2S9 -592 -99 0.0

v 644 592 289 99 592 769

25 ° - 30 °S
u -77 204 10S

V 843 767 421 204 538 807

30 ° - 35 °S
u -91 460 942 650 91

V 688 640 230 325 640

Even though Table 4 shows large temporal and spatial variability for the wind

stress, a simpler but still representative initialization of the wind velocity was used for

this study. The meridional variability was included by dividing the domain into three

wind forcing regions consistent with the latitudinal divisions of 25°S and 30°S in Table

4. The wind stress field for May was selected as representative of the Leeuwin Current

generation period as it is near the middle of the observed period of maximum poleward

flow (autumn and winter). Examination of wind velocities in Table 4 also shows that

the May figures are a reasonable approximation to the mean values for the period

March to July. The wind forcing used in the model is shown in Figure 6.

3. Atmospheric Thermal Forcing

The choice of a representative air temperature for the zero initial surface heat

flux, described earlier, is made complicated by the large latitudinal range of the domain.

Mean values over the entire domain for cloud amount, sea surface temperature and rel-
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Figure 6. Wind Forcing: Cross-shore (a) and Alongshore (b) components of

wind forcing used in the model, which is a generic (northern hemisphere)

eastern boundary current model. Positive values of wind strength cor-

respond to onshore and poleward wind velocities.

ative humidity (from USSR Ministry of Defense, 1979), and insolation at the top of the

atmosphere (from List 1963) are listed in fable 5. I he sensitivity of the heat budget to

seasonal variations in wind strength was tested using the wind velocity data for May to

July. Since the air temperature required for a zero initial heat flux (using the wind

strengths in Table 5) is 297.7 K for May and 298.3 K for July, a value of 298.0 K was

used in the model.
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Table 5. HEAT BUDGET PARAMETERS
Cloud cover 0.65

Sea surface temperature 21.5 ° C

Relative humidity 0.65

Insolation at top of atmosphere 595.5 cat cm~ 2 day- 1

Wind strength (May) 400 cms- 1

Wind strength (July) 5S9 cms-*

B. EXPERIMENTAL DESIGN

1. Forcing by an Initialized Current (Case 1)

A preliminary experiment, designed to test the model and confirm its ability to

produce and resolve mesoscale features, was conducted. The model was initialized using

a current field based on observations reported by Thompson (1984) and run for 40 days.

The vertical structure was defined using a surface poleward flow of 50 cm sr l decaying

exponentially to zero current at 150 m. A sinusoid was used to define the undercurrent

which has maximum strength of 30 cm s~ l at 300 m. The horizontal structure is

Gaussian with maximum flow initialized 40 km offshore. The initial background tem-

perature field used were based on the climatology of Levitus (1982) and decreases ex-

ponentially from 25°C at the surface to 2°C at 4500m. The initializations for Case 1 are

shown in Figure 7.

2. Forcing by the Indian Ocean Density Field (Case 2)

The first of the forcing mechanisms to be investigated is the Indian Ocean

thermal gradient. In this experiment, the model is initialized with the temperature data

from Table 1 and allowed to run for 160 days. The length of this time period was chosen

to include both the generation of the current and any eddies which may form on the

flow.

3. Inclusion of North West Shelf Waters (Case 3)

To investigate the role of the NW Shelf water, the background Indian Ocean

thermal field is retained to maintain the forcing as in Case 2. The warmer water, as de-

tailed in Table 2, is then added to the inshore, equatorward corner of the model to sim-

ulate the influx of NW Shelf water, consistent with satellite imagery. The model is then

run for 160 davs.
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-4. I he Role of Wind Forcing ((use 4)

I he forcing oi the Leeuwin Current by wind is investigated over 160 days using

the wind velocity data for May in Table 4. I he Indian Ocean thermal structure is

maintained thus allowing comparison between cases 2 and 4 to isolate the effects of the

wind.

5. Combined Thermal and Wind Forcing (Case 5)

In the final experiment, all three proposed forcing mechanisms, i.e., the Indian

Ocean thermal field, the influx ofNW shelf waters and wind stress arc combined and the

model run for 240 days. In addition to generating the current and eddies, the longer

period should allow the flow to evolve towards a statistically steady state, allowing a

more detailed analysis of the instability to be conducted. As the Leeuwin Current is a

strongly seasonal feature (Godfrey and Ridgcway, 1985; Pcarcc and Cresswell, 1985), it

is considered unrealistic to run the model on longer without including seasonal vari-

ations to the forcing mechanisms.
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IV. ANALYSIS TECHNIQUES

A. ENERGY ANALYSIS

An energy analysis based on that of Han (1975) and Semtner and Mintz (1977) was

made to gain a better understanding of the energy transfers in the unstable flow. The

energy calculations are presented using the Semtner and Mintz (1977) notation:

( )
time average

(
)' time deviation

( ) horizontal space average

(
)' horizontal space deviation

1. Kinetic Energy

The kinetic energy (K) is calculated by:

K=^±t [26]

and presented in a time series plot. After reaching a quasi-steady state in which the total

kinetic energy is nearly constant, the time mean and time eddy kinetic energy are calcu-

lated by:

K~^- [27]

—2 —2

K' =
u y . [28]

2. Available Potential Energy

Available potential energy (P) is calculated by:

P = ag
I \ uz

[29]

and plotted in a time series to determine when a quasi-steady state is reached and sta-

tistics can be collected. The temporal mean and eddy available potential energy are then

calculated bv:
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p = v.g ±{T)< 8T
[30]

P' = O.R (/" r
er

[31]

3. Energy Transfers

The transfers between the enercv tvnes are defined, after Semtncr and Mintz

(1977) by:

{K-P)--ag[Tw] [32]

[P' -> K'} =ctg[Tw'] [33]

(A' - A.''} = v.l V • v'v' 4-— w'v'
cz

[34]

{P ->F} = ag T V . v' T'
er
cz

[35]

The model output consists of velocity components and temperature at daily in-

tervals at each grid point and neither the vertical velocity nor any advection terms cal-

culated by the model are stored. As the calculation of the energy transfers requires both

vertical velocity and numerous advection terms, these were recalculated in the same

manner as in the model but using the stored values of u, v and T as the input data.

Thus, although the energy transfers are recalculated from model output, they are done

consistent with the initial calculations of vertical velocity and advection terms by the

model.

4. Energy Transfer Diagrams

Using the energy transfers calculated above and the temporal mean and eddy-

kinetic and available potential energy values, an energy transfer diagram may be con-

structed for those periods in which the total energies are nearly constant. Semtncr and

Mintz (1977) applied their energy transfer analysis to currents which had become un-

stable, generated eddies and then reached a quasi-steady state. In this study, the steady

energetic state prior to eddy generation will be examined and the energy transfer plots
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and diagrams used to argue for the instability mechanism which leads to the initial eddj

generation in each case.

B. SPECTRAL ANALYSIS

A spectral analysis technique discussed by Lopes da Costa ( 1989) is used to estimate

the dominant wavelengths at which eddy growth occurs. The time evolution of the eddy

fields can be seen on 3-dimensional time series plots of spectral density versus alongshore

wavenumbcr. The alongshore wavenumber is selected based on an assumption of a

meridional anisotropic preference for the eddy development. I he model configuration

of 65 alongshore temperature grid points and 64 velocity points is ideal in allowing data

over the entire domain to be used in computing the discrete Fourier transform based on

64 points.

Features used in the spectral package include pre-whitening, which allows a relative

energy maxima to be determined more easily when the general spectrum is high in the

wavenumber region of interest and no clear peak is apparent. The pre-whitening pro-

cedure consists of differentiating the series in the space domain and using the transfer

function to integrate in the wavenumber domain after the estimation of the spectral en-

ergy densities.

Leakage due to the finite length of the series is reduced using either a cosine taper

or Hanning window. The loss of variance due to the windowing is then compensated for

by scaling the calculated one sided spectral density by a factor of 2.0 for the Manning

window or 1.1 for the cosine taper. Lopes da Costa (1989) concludes that, in general,

the combination of a cosine taper and no pre-whitening best conserves total variance.

A Manning window either with or without pre-whitening is found to give better results

if the wavenumber with the maximum spectral density is to be determined, without re-

gard to the total variance.

As the energy is calculated using the techniques described earlier in this chapter, the

conservation of variance is disregarded in favor of the determining the wavenumber with

maximum energy and a Hanning window used without pre-whitening in this study. For

a more detailed explanation of the spectral analysis package, the reader is referred to

Lopes da Costa (19S9).

C. STABILITY ANALYSIS

The stability analysis used in this study is based on Batteen et al. (1989) who inves-

tigated the dynamics of the eddy generation observed in the PE model. The potential
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for instability is determinedly examining the potential vorticity (q) of the flow and also

oq
. ...

its cross-shore derivative (

—— ) I he potential vorticitv is calculated by:
ox

q -(f+Q2f—£L&. [36]
cz cx cz

where

{
_Jt_iH.. [37]

cx dy

For a How which has a basic state changing slowly in space and time Kamenkovich
dq

et al. (1986) sive the necessarv conditions for baroclinic instability as: —— change sisn,
dq

'

,

ox
and v —— be positive somewhere in the flow. I hev also give sufficient conditions (or the

cx
instability mechanisms. For baroclinic instability, the source of energy is the vertical

shear in the mean flow, ( -^— ) and the scale of the generated disturbances is of the order
oz

of the Rossby radius of deformation. For barotropic instability, the energy source is the

horizontal shear in the mean flow (
—— ) and the disturbances grow at a scale less than
dx

the Rossby radius.

"1 he sufficient condition for baroclinic instability (Kamenkovich et al.: 19S6) of a

minimum vertical shear is not required for this study as the mean flow is strongly

meridional. Olivier (1987) showed that on a (i plane, energy can be released in a

meridional flow without being acted upon by /?; hence any vertical shear which is greater

than the dissipation level in the model may produce instability.

The individual components of the analysis, namely energy transfers, spectral analysis

and the instability analysis should all complement each other. From the energy transfer

analysis, the location and magnitude of baroclinic and barotropic transfers can be found.

Those waves which are unstable and, in particular, the fastest growing wave can be de-

termined from the internal Rossby radii and the spectra can confirm whether those

waves do indeed exist.
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V. RESULTS AND DISCUSSION

A. LEEUVVIN CURRENT GENERATION

To determine the success of the model in generating the Leeuwin Current, the data

from the model will be compared with observational data collected during LUCIE. A

simple statistical test will be used to test the hypothesis that the mean velocity compo-

nents and temperature from the model could come from a population having the mean

and variance of the observed data. The comparison between model and observation

data will be done at three locations, one in each of the different wind forcing regions

used in the model. The three locations are chosen to best coincide with deep water

LUCIE stations and cover almost the entire latitudinal extent of the domain. Figure S

shows the location of the LUCIE stations used in the comparison.

The contribution of each of the forcing mechanisms in each region of the model is

determined by choosing a grid point representative of the current in that region for

analysis. The points chosen are 45 km offshore of the model's eastern boundary. Based

on satellite imagery (e.g., Figure 2), a position 45 km from the shelf break is on the

western side of the core of the current and in a region of eddy generation. Analysis of

the model data at these points should show a generally poleward How with variability

due to instability in the current. lime series plots and summary tables of velocity com-

ponents and temperature will be presented to show the effect of the forcing mechanisms

at a range of depths. The positions of the points at which the time series are plotted are

also shown in Figure 8.

For ease of comparison between model results and observational data, the

alongshore velocity components have been given the same sign convention, one con-

sistent with the model and the northern hemisphere. Despite the application of the

model results to the Leeuwin Current, the change is easier performed on tables of ob-

servations than on plotting and analysis routines which access the model output directly.

Grid point (60,1 1), designated A, is selected for analysis of the model output at the

equatorward end of the domain. It is poleward of the region initialized with the warm

water representing the NW Shelf waters and latitudinally central to the wind forcing re-

gime for that region of the model. The comparison at the equatorward end of the model

domain will use data from grid point (58,14), designated B. This is the closest point in

the model to the station designated B2 by Boland et al. (1989) from LUCIE. The shal-
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with LUCIE stations and will be used for comparison with model results.

Refer to Figure 1 for geographic locations.
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low waters (~ 80 m depth) in which the LUCIE array B2 was deployed make it barely

suitable for use; however, since it is the only observational data available, it will be used

to give at least some indication of the model's accuracy in that region.

Grid point (60,33), designated C, is chosen as representative of the current in the

middle region of the model and will be used to discuss the effects of the different forcing

mechanisms in that region. A mean of grid points (62,40) and (63,40) corresponds to the

Dongara array designated D4 during LUCIE and will be used for comparisons. Data

from these grid points is designated D in this study. Array D4 is chosen over the other

Dongara arrays for comparison as it furthest offshore, thus minimizing the elfects of

bottom topography. No shallow water comparison is made with the current meter data

available over the shelf, as a shelf is not included in the model.

Finally, in the poleward third of the domain, grid point (60,55), designated E, is se-

lected as representative of the current in that region, being away from boundaries,

latitudinally central and on the western side of the core of the current. In selecting Cape

Mentelle arrays M3 and M4 for the comparison at the poleward end of the domain, the

same reasoning is used as for the deep water Dongara stations. The model data is de-

rived from an average of grid points (62,64) and (63,64) and is designated F. The posi-

tions of points A through F is shown in Figure 8.

i. Equatonvard End of Domain

The model results at selected depths for grid point A are presented in Table 6.

Figures 9, 10, and 11 show the time series for each Case at depths of 10 m, 100 m and

300 m. The velocity scale is unchanged over the series of plots to emphasize the mag-

nitude of the fluctuations for each case. The tabulated data together with the figures

will be used to examine the effect of each of the forcing mechanisms in the equatorward

region of the model. Only Cases 2 through 5 are considered. Case 1, addressed in

Chapter V. B. 1, was run as a test case for the model and does not include any forcing

bv the mechanisms under investigation.
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Table 6. MODEL RESULTS. POINT /V

Case 2 Case 3 Case 4 Case 5

Mean S.Dev. Mean S.Dev. Mean S.Dev. Mean S.Dev.

10 m
u 1.1 0.3 13.5 18.0 -2.6 1.4 7.6 15.3

V 2.1 1.5 17.6 16.6 4.5 1.5 10.3 14.8

7 23.1 o.i 26.4 1.8 22.2 o.3 24.1 1.6

50 m
u 0.8 0.4 11.0 13.3 -1.7 1.2 7.6 11.7

V 1.6 1.5 13.7 13.2 3.4 1.6 9.3 12.

S

T 22.3 o.o 25.2 1.5 22.1 0.2 23.7 1.4

100 m
u 0.6 0.3 7.3 10.5 -1.6 1.0 5.5 8.9

V 0.9 1.4 9.0 10.3 2.6 1.5 6.8 11.1

T 21.1 0.0 23.8 l.o 21.1 o.l 22.6 1.1

300 m
u -0.2 0.2 2.6 5.2 - 1 .0 0.7 4.3 5.2

V -1.1 1.2 -3.7 4.0 -0.5 1.3 -1.5 7.0

T 15.0 0.1 16.0 0.3 15.0 o.l 16.1 0.3

500 m
u -0.

1

0.2 0.3 2.8 -0.3 0.2 1.8 3.3

V -0.9 0.8 -6.0 3.4 -0.6 l.o -5.5 3.8

7" 10.1 o.O 10.5 0.1 10.1 o.O 10.6 o.l

a. Case 2. Forcing by Indian Ocean Density Field

The Indian Ocean density field, as defined by its temperature structure, is

sufficient to establish a surface geostrophic flow with onshore and poleward compo-

nents. The onshore How is weak and decreases with depth, reversing direction and be-

coming offshore above 300 m. The alongshore flow shows a similar trend, being

poleward in the upper layers, reversing with depth and showing little variability over the

160 days of the run.

b. Case 3. Forcing by Indian Ocean and NW Shelf

The addition of NW Shelf water to the Indian Ocean forcing leads to a

much stronger and highly variable flow. The strength of the onshore and the poleward

components of the flow increases markedly. The much warmer temperatures in Case 3

compared with Case 2 highlights the advection of the warmer NW Shelf water poleward.

In the vertical structure, the depth at which the flow reverses appears, by interpolation,

to be slightly deeper and the equatorward undercurrent is also increased in strength

compared with Case 2. In view of the proximity of point A to the source of the shelf
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water, the domination of the geostrophic How in Case 2 by the shelf water is expected

so that further downstream, these effects should be decreased.

c. Case 4. Forcing by Indian Ocean and Winds

At the equatorward end of the domain, the winds have offshore and

equatorward components (Table 3); hence their effect on the surface current, according

to Ekman theory, should be to transport mass poleward and offshore respectively, fable

6 shows that the cross-shore flow reverses in the upper 100 m from the onshore flow of

Case 2, and the flow is now offshore at all five chosen levels. The alongshore compo-

nent of the current is stronger in the poleward direction, consistent with the coastal

Ekman theory. This increase in strength of the poleward component of the flow into the

prevailing wind has been observed in current meter data collected at the southern end

of the NW Shelf by Holloway and Nye (1985). IJelow 100 m, the equatorward under-

current is still present but has weakened slightly from Case 2. A temperature decrease

from 23.1 °C to 22.2°C in the near surface layer (10 m) is consistent with upwelling due

to the equatorward alongshore component of the wind.

Comparing the magnitude of the variations in velocity components and

temperature due to the addition of NW Shelf water (Case 3) and wind forcing (Case 4),

the effect of the winds is clearly less significant than the NW Shelf waters. The wind

forcing would appear to be a significant feature only during those periods when the NW
Shelf waters are not present, possibly immediately before the influx of the warmer wa-

ters. From the monthly components of wind stress (Table 3). one observes that the wind

stress between 20°S and 25°S in November and January has no zonal component. This

is the period during which the Leeuwin Current is weakest and often non-existent

(Godfrey and Ridgevvay, 1985). The change in the wind stress to a strengthening off-

shore component and weaker alongshore component coincides with the seasonal gener-

ation of the Leeuwin Current. Although this study shows the effect of the winds to be

second order to the NW Shelf waters, they may play a significant role in determining the

timing of the poleward surge of the warmer NW Shelf waters, which, once established,

dominates the flow regime.

d. Case 5. Forcing by Indian Ocean, NW Shelf and Winds

The flow resulting from the combined effect of the three forcing mechanisms

shows that their net effect is dominated by the inclusion of the NW Shelf water and that

the combined flow is weakly non-linear. In Case 3, the addition of the NW Shelf waters

to the Indian Ocean waters (Case 2) led to a large increase in the strength of both the

onshore and poleward components of the flow. In Case 4, the effect of the wind forcing
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was to create an offshore (low, whilst increasing slightly the strength of the poleward

How. Upper layer temperatures were much higher in Case 3 and slightly lower in Case

4. The combined forcing produces a current which is closer in character to Case 3 than

Case 4. The flow is onshore and poleward in the upper layers with an cquatorward

undercurrent at and below 300 m. Temperatures arc increased at all levels from Case

2. The How in Case 5 clearly shows the contributions of the NW Shelf waters and the

wind forcing on the current generated in Case 2. Since their combined effect cannot be

calculated by a simple linear addition of the individual effects, it is likely that the forcing

mechanisms are weakly non-linear in the equatorward third of the domain.

e. Comparison with Observations

A comparison between the statistics from Case 5 at a depth of 65 m and the

observations at the LUCIE Carnarvon station at the same depth is shown in Table 7.

The hypothesis that the mean values of the model data /t, are equal to the means of the

observational data /.t
2 is tested. Using the procedure of Walpole and Myers (1985) with

a significance level of a = 0.01, corresponding to a critical region of z = ±2.575, the z

statistics for u, v, and T were calculated by:

z =

where .v, and jc
2
are the means of the two populations, o] and a\ their variances, and /?,

and n
2
the number of data points.

The calculated z statistics for u, v, and T are -1.55, 1.43 and 8.54 respec-

tively. Thus, the means of the velocity components from the model are not statistically

different from observations at a significance level of 0.01, although the temperature data

is.

Comparing the results from points A and B, 63 km apart, the sensitivity of

the statistical comparison to the grid point chosen from the model is clearly apparent.

Had a position a mere few grid points away from point A been selected for the com-

parison, the mean values for u, v, and T of 7.0, 8.6, and 23.4 respectively would have

been well outside the critical values for the 0.01 significance level. The strong gradient

in the mean values between the two points, which are on the western side of the core

of the current, indicates the model generated current may have either a strong shear or

large variability. The sensitivity to the point chosen for comparison also reduces the
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significance of the statistical results. One may conclude only that the model produces

a current with similar characteristics to the Leeuwin Current as observed at the

Carnarvon array during LUCIE.

Table 7. MODEL/OBSERVATIONS
CARNARVON)

COMPARISON (B VERSUS

V V T

Mean S.Dev. Mean S.Dev. Mean S.Dev.

65 m
Model -1.5 13.5 7.4 12.4 23.1 0.9

Observations 0.2 6.3 5.7 8.9 22.3 1.5

2. Center of Domain

Table 8 contains model results for selected depths for point C, (Figure 7) chosen

as representative of the center of the domain. This table, along with Figures 12, 13 and

14, will be referred to in discussing the effects of the different forcing mechanisms over

the middle third of the domain (covering approximately latitudes 26° to 30°).

Table 8. MODEL RESULTS. roiNT c

Case 2 Case 3 Case 4 Case 5

Mean S.Dev. Mean S.Dev. Mean S.Dev. Mean S.Dev.

10 m
u 1.6 0.8 7.0 6.3 -0.7 4.1 -13.2 14.9

V 7.9 3.5 8.5 11.4 8.6 5.4 8.4 16.6

T 22.1 0.1 22.3 0.4 21.7 0.1 22.2 0.5

50 m
u 1.3 0.7 6.7 5.2 0.5 3.9 -11.4 13.8

V 6.3 3.6 6.9 10.2 7.8 5.2 7.6 15.5

T 21.3 0.2 21.6 0.4 21.5 0.3 22.0 0.6

100 m
u 0.9 0.5 6.2 4.7 0.4 3.5 -10.4 12.4

V 4.2 3.8 5.0 9.0 6.3 5.0 6.0 13.9

T 20.1 0.2 20.5 0.3 20.3 0.3 21.3 0.8

300 m
u 0.0 0.4 4.9 4.4 0.5 2.4 -8.3 8.9

V -2.8 4.0 -4.0 6.6 0.3 5.1 -3.0 10.4

7" 14.9 0.2 15.2 0.2 14.9 0.2 15.8 0.6

500 m
n 0.

1

0.4 3.0 3.4 0.5 1.5 -5.0 6.4

V -3.4 2.5 -7.1 4.3 -1.1 4.7 -6.3 7.9

T 10.3 0.1 10.5 0.2 10.2 0.1 10.5 0.4
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a. Case 2. Forcing by Indian Ocean Density Held

The features of the surface Mow Meld observed at the equatorward end of the

domain, i.e., onshore and poleward Mow, are much stronger in the center region of the

model. In the upper 100 m, the onshore Mow is at least 50% stronger, and the poleward

Mow approximately four times that observed at point A at the same levels. I his is con-

sistent with the alongshore pressure gradient generating a geostrophic onshore Mow

which then forces the poleward boundary current. The alongshore current is expected

to increase in strength at the poleward end of the domain as it is continually augmented

by more inflow. The variability in the velocity components is also larger in the middle

of the domain than at the equatorward end. This suggests that eddies forming in the

Mow generated by the alongshore pressure gradient arc more likely at the poleward end

of the domain where the Mow is stronger. Temperatures are colder at point C than at

point A, which is consistent with the temperature initialization.

b. Case 3. Forcing by Indian Ocean and IS \V Shelf

The inclusion of the NW Shelf waters strongly increases the strength of the

onshore Mow but has little effect on the mean poleward flow. The most significant

change due to the Shelf waters is in the variability which is much larger at all levels.

This increased variability is most pronounced on the alongshore velocity component.

Temperatures are slightly increased at all levels due to the advection of the warmer wa-

ters poleward. The magnitude of the temperature increase is far less than that observed

at point A. This is seen as evidence of increased mixing with the Indian Ocean water

and of a larger net Mux of heat to the atmosphere during the longer passage of the NW
Shelf waters away from their origin. The effect of the NW Shelf waters is most pro-

nounced on the equatorward undercurrent which increases in strength by far more than

the poleward Mow. While the increase in strength of the undercurrent is seen as a better

indicator of the overall eMects of the inclusion of NW Shelf water, the surface Mow is a

better indicator of the variability due to the NW Shelf waters.

c. Case 4. Forcing by Indian Ocean and Winds

The wind stress used by the model in the central third of its domain is

equatorward with no cross shore component (Fable 3). On a western boundary, this

equatorward stress is expected to force an offshore Mow and bring cooler waters to the

surface. The results in Table 8 show the offshore Mow at 10 m and a reduced onshore

Mow at 50 m and 100 m, evidence of the expected effect of the wind forcing. At 300 m
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and 5(«) m, which arc below the thermocline, the cross-shore flow is onshore whereas in

Case 2 the u component of velocity is negligible. This onshore flow below the

thermocline is seen as further evidence of a wind forced upwelling regime as it provides

a continuity balance for the offshore How nearer the surface.

In considering the effect at point C of the wind forcing, one must account

for both the local forcing and the current advected into the region by wind forcing up-

stream. As seen earlier, the wind forcing strengthened the poleward component of the

flow at point A. The local forcing, having no cross-shore component, does not directly

contribute to any alongshore transport. Thus, the increase in strength of the poleward

component of the flow is due to upstream wind forcing instead of local forcing.

d. Case 5. Forcing by Indian Ocean, NW Shelf and Winds

The current generated at point C by the combination of the three forcing

mechanisms (Case 5) appears to be highly non-linear. Each of the flow characteristics

(u, v, T) reacts to the combined forcing in a far different manner than it docs to each

forcing mechanism in isolation.

This is seen most clearly in the cross-shore (u) component of velocity.

From a weak onshore flow at 10 m. 50 m and 100 m in Case 2, which is strengthened in

Case 3 and opposed in Case 4, the combined forcing produces a mean (low which is very

strongly offshore and highly variable. Examination of Figures 12 and 13 shows a nearly

sinusoidal trend to the velocity components which is suggestive of eddies moving slowly

past point C.

Despite the large departure from the results of Cases 2, 3, and 4 for the

cross-shore component of velocity, the alongshore component for Case 5 varies little

from the values recorded in the earlier experiments. The standard deviation is much

higher, reflecting the variations due to eddies. However, the mean, particularly at 10

m, 50 m and 100 m, is not significantly different in Case 5 to the mean in each of the

previous cases.

One important feature of the combined forcing is the time of onset of the

variability. As can be seen in Figures 12, 13 and 14, Case 2 has little variability. With

the inclusion of wind forcing in Case 4, low frequency fluctuations are apparent from

about day 80 onward. In Case 3, the variability occurs earlier and at a higher frequency

and finally in Case 5 the instability in the flow is apparent almost immediately.

e. Comparison with Observations

Model results and observational data are presented in Table 9 for compar-

ison. A two sided test using a z statistic was again used to test the hypothesis that the
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means of the model and observational data are From the same population. Using the

same significance level of 0.01, corresponding to a critical z region of ±2.575, the test

showed that model results differed markedly from observations for both u and 1. The

v component had z statistics of 2.4 (71 m), 0.34 (121 m), 0.11 (246 m) and (121 (446 m),

indicating good model results for the poleward flow.

Whilst the u component of velocity from the model at point I) differs so

markedly from the observed values at the Dongara array, a comparison of data from

'fables 8 and 9 shows that the large onshore velocities observed during LUCIE arc

produced by the model a few grid points away at point C. This further highlights the

difficulties in choosing a single point from the grid of a model which has a flat bottom

and shear walls for comparison with observations. This would be further exacerbated

if, as suggested by Weaver and Middleton (1989), the local shelf" geography and topog-

raphy are important factors determining the flow characteristics.

Table 9. MODEL/OBSERVATIONS COMPARISON (D VERSUS DONGARA)

U V T

Mean S.Dev. Mean S.Dev. Mean S.Dev.

71 m
Model 1.3 4.6 25.1 17.2 21.9 0.7

Observations -15.4 28.7 30.3 34.6 20.9 0.9

121 in
Mock'

I

1.3 4.7 23.5 14.7 21.2 0.6

Observations -5.5 14.3 24.3 20.7 19.4 1.5

246 m
Model 0.8 4.1 o.l 10.7 17.3 0.4

Observations -2.4 7.7 0.2 11.1 14.4 0.9

446 in
Model 0.3 4.1 -12.7 6.5 12.1 0.2

Observations -1.1 5.} -5.9 11.2 9.4 0.2

3. Poleward End of domain

The results from the model at point E are presented in Table 10 along with time

series plots at 50 m, 100 m, and 300 m shown in figures 15, 16 and 17, respectively.

The effects of the different forcing mechanisms in the poleward third of the domain,

covering approximately latitudes 30° to 34°, should be an extrapolation of the results in

"fables 6 and 8 and are discussed earlier.
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Table 10 . MODEL RESULTS. POINT E

Case 2 Case 3 Case 4 Case 5

Mean S.Dev. Mean S.Dev. Mean S.Dev. Mean S.Dev.

10 in

u 3.1 2.3 4.2 13.9 1.2 5.2 -5.1 17.0

V 8.9 8.2 14.7 14.8 8.1 11.4 12.7 16.8

T 20.

S

0.3 21.5 0.8 21.0 0.3 21.7 0.6

50 m
u 2.8 2.2 3.7 11.8 1.7 5.2 -4.2 15. (

>

V 7.8 7.6 13.0 12.8 8.6 10.4 13.1 15.5

T 20.1 0.4 20.8 0.8 20.6 0.6 21.4 0.8

100 in

u 2.4 2.0 2.9 9.9 1.0 . 5.0 -4.2 14.3

V 6.1 6.7 10.1 1 1 .0 6.7 9.1 lo,9 13.9

T 19.0 0.4 19.7 0.8 19.3 0.6 20.7 1.1

300 in

u 1.1 1.4 -0.3 7.9 -2.2 5.5 -5.7 10.5

V -U.8 4.7 -2.5 8.1 -1.4 5.6 o.S 10.9

T 14.5 0.3 15.0 0.5 14.5 0.4 15.5 o.S

500 in

n 0.6 1.2 -1.5 6.9 -2.2 4.0 -6.0 7.6

V -4.4 3.7 -7.7 6.6 -4.4 4.0 -4.8 8.4

T 10.4 0.2 10.5 0.3 10.3 0.2 10.7 0.3

a. Case 2. Forcing by Indian Ocean Density Field

As theorized earlier, the strength of the onshore and poleward components

of the velocity generated by the model arc stronger at the poleward end of the model

(point L: ) than at either of points A and C. By interpolation, the flow reversal below the

stronger surface flow appears to be deeper at point E than at point C and the under-

current is stronger at 500 m. The onshore velocity component is stronger at point E

than at either points A or C, and, as expected, temperatures are generally lower at the

poleward end of the domain.

b. Case 3. Forcing by Indian Ocean and ATE Shelf

The effects of the inclusion of NW Shelf waters are similar at the poleward

end of the domain as elsewhere. The poleward flow in the upper levels ( 10 m, 50 m and

100 m) increases in magnitude and variability and the equatorward component of the

undercurrent is also stronger.
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Temperatures increase at all levels due to the advection of the NW Shelf

water poleward. The magnitude of the temperature increases is less at the poleward end

than at the cquatorward end of the domain.

c. Case 4. Forcing by Indian Ocean and Winds

The wind forcing at the poleward end of the model is mainly onshore with

a weak equatorward component (Table 3). The elfccts of wind forcing at point E is a

combination of the remote upstream forcing, which contributes to the flow advected to

the poleward end of the region, and the local forcing. The local forcing, having onshore

and equatorward components should produce equatorward and offshore transport. The

local forcing is clearly the stronger of the two as the onshore and poleward (lows of Case

2, which should be augmented by upstream advection, are both reduced at point E. This

is evidence of the local offshore and equatorward Ekman transport weakening the mag-

nitude of the flow. With no offshore velocity component there are no upwelling effects

seen and the temperature actually increases slightly over than of Case 2. The variability

due to the inclusion of wind forcing is much higher at E than at either points A or C.

This may be due to the higher wind stress at the poleward end of the domain than fur-

ther equatorward. A second factor may be the downstream location of point E which

makes it more susceptible to eddies which are advected into the region, finally, the

eddies may be more prevalent purely as a function of the increase in strength of the

current at the poleward end of the domain.

d. Case 5. Forcing by Indian Ocean, NW Shelf and Winds

At point E, non-linearity and very high variability are major characteristics

of the flow generated by the combined forcing mechanisms. The alongshore component

of the flow, whilst highly variable, is very similar in strength to Case 3. This indicates

that the wind forcing, whilst stronger in absolute terms than at points A or C, has the

least effect of the three forcing mechanisms at the poleward end of the domain. This is

borne out by Figures 15 and 16 in which the general characteristics of plot (d) arc more

similar to (b) than either (a) or (c).

The effect of each forcing mechanism on the timing and frequency of in-

stability is also seen in Figures 15 and 16. In Case 2 (b) the instability is low frequency

and slow to develop. In Case 4 (d) it develops earlier but again at low frequency and

with low amplitude fluctuations. The NW Shelf water in Case 3 (c) leads to earlier,

higher frequency and larger amplitude deviations while in Case 5 (d) the instability is

apparent almost immediately. These results are consistent with the results at point C.

There the instability occurs earlier in Case 5, i.e., when the three forcing mechanisms are
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combined. The results at point A are less clear due to the immediate proximity of the

NW Shelf water.

e. Comparison with Observations

The two-sided hypothesis test described earlier was again used to test the

hypothesis that the model and observational data arc from the same population. A

significance level of 0.01 was again used and the velocity components calculated by the

model easily met the criteria. The calculated z statistics for the u components are 0.08

(43 m), 0.0 (90 m and 160 m), 2.38 (230 m) and 0.32 (320 m) compared to the critical

value of 2.575. For the v component the z statistics are 0.76 (43 m), 0.48 (90 m), 0.26

(160 m), 0.83 (230 m) and 1.43 (320 m). Temperature values are consistently high in the

model and differ from observations by up to three degrees. Comparison of model results

at the inshore comparison point and the representative point chosen further offshore

shows a strong cross-shore temperature gradient. The discrepancy between temper-

atures from the model and observations corresponds to a two grid point misalignment

of the data from each source.

Table 11. MODEL/OBSERVATIONS COMPARISON
MENTELLE)

(F VERSUS CAFE

U V T

Mean S.Dev. Mean S.Dev. Mean S.Dev.

43 m
Model 0.1 1.1 30.5 25.2 21.5 0.6

Observations 0.2 12.0 2S.8 22.6 20.5 1.0

90 in
Model 0.0 1.1 24.7 21.1 20.7 0.7

Observations 0.0 12.7 23.8 24.0 24.6 2.6

160 m
Model -0.0 0.8 13.8 17.2 19.1 1.0

Observations -().() 9.3 13.4 20.0 16.9 2.1

230 m
Model -0.

1

0.7 4.5 15.2 17.5 0.9

Observations -1.0 6.9 3.2 20.3 14.4 2.0

320 m
Model -0.0 0.7 -6.0 14.6 15.1 0.5

Observations 0.1 5.6 -3.8 22 2 12.1 0.9
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B. INSTABILITY IN THE LEEUWIN CURRENT

I. Case 1. Forcing by Initialized Current

Case 1 was run primarily as a test of the model and analysis software. The re-

sults are presented for completeness and to aquaint the reader with the analysis. The

results will also act as a reference for the later studies. Figure 18 shows the surface dy-

namic height anomaly field, calculated from a reference level of 2000 m. Dynamic height

anomaly plots will subsequently be referred to as pressure fields. The pressure field

shows instabilities developing rapidly in the current with perturbations apparent by day

10. By day 30 rings have formed and detached from the jet. The rings then move off-

shore from days 30 to 40.

The surface fields of velocity components and temperature are presented at 10

day intervals for the duration of the run (40 days) in Figures 19 through 21. The cross-

shore velocity field is generally the best indicator of eddy formation and by day 10 it is

apparent that instabilities are leading to eddy formation along the entire meridional ex-

tent of the domain. By day 20 the eddies have increased in size and move offshore. This

trend of growth and offshore movement continues to the end of the run at 40 days.

a. Energy Analysis

The energy analysis described in Chapter 4 may be used to determine the

temporal mean and eddy kinetic energy and available potential energy from statistics

collected during periods of near constant total energy. Plots of the energy transfers

during these periods give the dominant transfers and the regions in which they are most

active. The total kinetic energy and available potential energy over the entire domain

and for all layers is plotted in a time series and shown in Figure 22. The period during

which the energy analysis may be applied to determine the dominant instability mech-

anisms is the first 10 days. Since a separate layer by layer analysis showed that the upper

five layers contain most of the energy, subsequent analysis will be confined to those

layers.

Figure 23 shows the energy transfers summed over the upper five layers for

the first 10 days. Subplots (a), (b) and (c) are plotted at the same contour interval to

allow for easy comparison, and (d) is the cross-shore velocity component field at day 10.

the end of the period under analysis. Subplot (a) shows the large transfer from mean

available potential energy (/') to eddy available potential energy (/*') along the entire

inshore extent of the domain. The baroclinic transfer from P' to eddy kinetic energy

(A.'') is shown in subplot (b), and the barotropic transfer from mean kinetic energy (K)

to A'' in (c). Comparisons of (b) and (c) and each of them in turn with (d). show that the
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Figure 21. Case 1. Surface velocity and temperature fields, day 40: As for Figure

20.

instability appears to be mixed baroclinic and barotropic, with the barotropic appar-

ently stronger and more widespread. The choice of contour interval may be masking

other regions of instability which fail to reach a contour level so a more detailed analysis

is required. The extensive regions of negative barotropic and available potential energy

transfers need to be accounted, since a domain wide average may result in cancellation

of effects and not show the eddy generation mechanisms.

After identifying the region of instability, the energy analysis was re-run

over the more constrained region of the inshore 10 grid points, corresponding to an

offshore distance of 90 km, between 120 km and 1160 km alongshore. The energy

transfer diagram for the first 10 days over the narrow inshore region is shown in Figure

24. It shows that the regions of positive barotropic transfer are dominant over the

negative barotropic transfers, resulting in a net transfer from K to K'. The energy

available for barotropic instability comes from the horizontal shear in the flow

(Kamenkovich ei ai, 1986) so increased barotropic contribution should be apparent if

the enerev transfers are calculated over the shear zone offshore of the core of the
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poleward jet (Figure 19). Similarly, in the core of the poleward jet, where the under-

current and hence vertical shear are greatest, baroclinic instability is expected to be

dominant. To test these hypotheses, the region described above is divided into two

smaller regions, each covering five cross-shore grid points. The inshore region is in the

core of the current and the offshore region closer to the horizontal shear zone. The en-

ergy transfer diagrams for each region are in Figures 25 and 26, respectively. Comparing

the transfers for each domain, the regions of dominant baroclinic and barotropic insta-

bility can be isolated. The results clearly show that in a region of mixed instability, the

baroclinic growth will be dominant in regions of high vertical shear and the barotropic

dominant in regions where horizontal shear is strongest.

b. Spectral Analysis

The spectral techniques described in Chapter 4 are now applied to Case 1.

Figures 27 through 30 show the spectral density as a function of alongshore wavenumber

at 10 day intervals. As seen in Figure 23 earlier, the u component of velocity is a better

indicator of eddy formation than either the v component or temperature. Although

spectra for each variable are on the plots, the discussion will focus on the u velocity

component. At day 10, the dominant growth is at wavenumbers k = 0.002, 0.01 and

0.015 corresponding to wavelengths of 500 km. K)0 km and 66 km respectively. By day

20 the energy has increased by an order of magnitude and a slight spectral shift is evi-

dent. The maximum energy is now at wavenumbers k = 0.007, 0.01 and 0.015. The

amplitude of the spectra remains nearly constant from days 20 to 40. Figure 31 shows

the time series of Figures 27 to 30. The aspect of the plots makes it possible for peaks

to 'hide' other features and the linear amplitude scale suppresses all but the dominant

wavenumbers. Comparing Figures 27 and 31, the peaks at day 10 cannot be seen on the

linear scale as they are nearly 2 orders of magnitude smaller than the maximum values

on the plot. Figure 31 shows three dominant peaks at approximately 400 km, 135 km

and 90 km. By day 40 the peak at a wavelength of 135 km is the strongest. A combi-

nation of the figures allows both the wavenumbers associated with the initial growth to

be determined from the 2-dimensional plots and the general trend or shifts at maximum

amplitude to be determined from the 3-dimcnsional plots.

c. Instability Analysis

Finally, the necessary and sufficient conditions for the sources of instability

are investigated. For baroclinic instability Kamenkovich et a/.( 1 9S6) gives the necessary

conditions as:
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Figure 22. Case 1. Energy time series: Total kinetic and available potential en-

ergy (cm 2 s'1 ) summed over all layers and the entire domain.
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Figure 24. Case 1. Energy transfer diagram: The energy transfer diagram for the

region extending 90 km offshore. Units for /', A'. /
,; and A'' arc

ergs c/7J
-3

, and transfers arc in units of ergs enr 3
s

l x 10 6
.
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—— changes sicn, and
ax

iq
v
—— is positive
ax

somewhere in the domain. The energy source for the instability is a vertical velocity

shear (baroclinic) or horizontal velocity shear (barotropic). Figure 32(a) shows the
dq

alongshore and time averaged horizontal gradient of potential vorticity (~T~). and Figure

32(b) the alongshore and time averaged alongshore velocity. Both are averaged over the

model's entire meridional extent and over the first 10 davs. The conditions for
dq

baroclinicity are satisfied as —r~ changes sign near 35 km offshore and the product of v

dq "x
and —;— is positive over much of the region. The source of the baroclinic energv is

dx
readilv seen from the strong vertical shear. 1 he strong horizontal shears further offshore

dq
provide an energv source for the barotropic instability. I he —— and mean alongshore

ax
flow fields therefore support the earlier findings that a mixed instability mechanism is

responsible for the initial eddy generation. Baroclinic instability is dominant inshore

near the core of the current while barotropic instability is stronger further offshore on

the edge.

The Rossby radius of deformation, calculated from the temperature profile

at day 10. is Rd
= 21.9 km. The wavelength of the fastest growing wave associated with

this radius is given by 2nRH and calculated as 13S km. From the spectral analysis in

Figure 31 the dominant scales for growth are near 400 km. 135 km and 90 km. The 4(H)

km peak is attributed to a basin scale wave and the 135 km peak to the fastest growing

baroclinically unstable wave. Possible explanations for the peak near 90 km are second

baroclinic mode instability or growth of the barotropically unstable wave.

d. Conclusions

Case 1 was initialized with a poleward surface jet and equatorward under-

current with characteristics similar to the observed Leeuwin Current (Thompson, 1984).

Instability developed in the first 10 days and mesoscale eddies develop rapidly in the core

of the current and its offshore boundary. The instability mechanism is mixed with

baroclinic instability dominant, particularly inshore. "1 he contribution due to barotropic

instability is a maximum on the offshore edge of the jet. Plots of the cross-shore deriv-

ative of potential vorticity and alongshore velocity show that the necessary and sufficient

conditions for instability are satisfied. The length scale at which maximum growth oc-

curs is 135 km. associated with the first baroclinic mode and a Rossby radius of ap-

proximately 22 km.
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Most importantly, the analysis tools are consistent and in general agree-

ment with each other. These techniques may now be applied to the climatologically

forced currents of Cases 2 through 5.

2. Case 2. Forcing by Indian Ocean Density Field

Surface pressure fields at 10 day intervals are shown in Figures 33 to 35, and the

corresponding time series of surface velocity components and temperatures in Figures

36 to 44. The fields show the geostrophic onshore flow which feeds the poleward cur-

rent. At day 30 (Figure 37) a uniform onshore flow and an alongshore flow which

strengthens toward the pole are seen. The first evidence of eddy generation is seen at

day 70 at the poleward inshore end of the domain (Figure 39) and the eddy development

is seen thereafter. The eddies intensify, grow, and move offshore, advecting warmer

surface temperatures with them.

a. Energy Analysis

The time series of kinetic energy and available potential energy are pre-

sented in Figure 45. The available potential energy decreases steadily throughout

whereas the kinetic energy, initially large whilst the model adjusts geostrophically to the

forcing, is nearly steady from days 70 to 90. Since this corresponds to the period of eddy

generation, the energy transfers are calculated for that period.

Figure 46 shows: (a), the transfer between mean and eddy available poten-

tial energy; (b), baroclinic transfer; and (c), barotropic transfer for the period days 70-90.

Also shown, in Figure 46(d), is the cross-shore velocity component at day 90. The

transfers are clearly strongest in the region of the eddy development. A comparison of

plots (b) and (c), which have the same contour interval, indicates that barotropic insta-

bility is more important than baroclinic in providing the eddy kinetic energy. The mag-

nitude of the transfers was calculated for a sub-domain of 63 km cross-shore and 100

km alongshore centered on the position of the eddy at day 90. The energy transfer dia-

gram is shown in Figure 47. The transfer diagram supports the contour plot and shows

barotropic instability to be stronger than baroclinic in the immediate vicinity of the eddy

development.

b. Spectral Analysis

Figures 48 through 51 show energy increasing at a wavelength near 150 km

(alongshore wavenumber of ~ 0.0065 km v
) during the period of eddy development (days

70-100). Whilst the initial development is not apparent in the 160 day spectral time se-

ries for Case 2 (Figure 52), the peak energy at the end of the experiment is also at a
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Figure 44. Case 2. Surface Velocity and Temperature Fields, day 160: As for

Figure 42.

wavelength near 150 km. I lence, both the development and subsequent growth of eddies

appears to be at the same wavelength scale.

c. Instability Analysis

The necessary and sufficient conditions for instability in Case 2 are investi-

gated using Figure 53, which plots cross sections through the eddy generation region of:

(a) the cross-stream derivative of potential vorticity and (b) the alongshore velocity, av-

eraged over days 70 to 90. The cross-stream derivative changes sign at several locations

and its product with the alongshore mean flow is positive in the domain, satisfying the

necessary conditions for baroclinic instability. The necessary conditions for an energy-

source for instability arc satisfied by the vertical and horizontal shears in the flow.

The internal Rossby radius of deformation was calculated for the region of

initial instability, using the method given in Chapter IV. as 27.6 km. As baroclinic in-

stability favors wave growth at 2nRd and barotropic growth a shorter scale,

(Kamenkovich et al, 1986). the dominant wavelength scale of ~ 150 km is consistent

with the mixed instability observed in this case.
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Figure 45. Case 2. Energy time series: Total kinetic and available potential en-
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s"1

) summed over all layers and the entire domain.
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Figure 47. Case 2. Energy transfer diagram: The energy transfer diagram for the

upper five layers for the region between alongshore distances 1020 km

to 1120 km. extending 90 km offshore. Units for P. A', /"and K' arc

ergscnr 3
, and transfers are in units of ergs enr* s

_1 x 10 6
.
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Day 70: Region (I = 1 , 64; J = 1 , 64; K = 1 , 5 )
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Day BO: Region (1 = 1 , 64; J = 1 , 64; K = 1 , 5 )
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Figure 49. Case 2. Spectral density at day 80: As for Figure 48 but at day 80.
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Figure 50. Case 2. Spectral density at day 90: As for Figure 48 but at day 90.
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Figure 51. Case 2. Spectral density at day 100: As for Figure 48 but at day 100.
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Region (1 = 1, 64; J = 1 , 64; K = 1 . 5 )

Figure 52. Case 2. Spectral density time series: The time series of spectral density

from days 60 to 160. Note: the amplitude of the spectral energy is on

a linear scale.
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Figure 53. Case 2. Cross sections of dqjdx and alongshore velocity: (a). Vertical

cross section of the time averaged (days 70-90) cross-stream derivative

of potential vorticity, multiplied by the grid size (°C m ' r 1

), and scaled

by 10*. Contour interval is 0.05
c Cm'r'. (b). Vertical cross section

of the time averaged (days 70-90) alongshore velocity component

(cms '). Contour interval is 2.0 cms '. Vertical cross-sections are at

1080 km alongshore. Dashed contours denote negative values.
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d. Conclusions

The poleward surface flow and equatorward undercurrent driven by the In-

dian Ocean climatological temperature field is unstable and generates mesoscale eddies

at the poleward end of the domain. Instability is mixed with barotropic dominant. The

eddies form in the horizontal shear zone on the offshore side of the core of the current

and have a dominant wavelength of around 150 km, a scale consistent with the Rossby

radius of deformation of 27.6 km and the mixed instability mechanism.

3. Case 3. Forcing by Indian Ocean and NW Shelf

Figures 54 to 56 show the surface pressure fields at 10 day intervals for Case 3.

The initialization of the NW Shelf water is seen at the inshore equatorward corner of the

domain at day 0. The poleward flow is now much stronger than in Case 2 and instability

develops more quickly. Whereas in Case 2 the instability developed at the poleward end

of the domain, the initial eddy development occurs first at the equatorward end and

spreads poleward with time. This can also be seen in the time series of velocity compo-

nents and temperature in Figures 57 to 65. The NW Shelf water temperature initializa-

tion is seen at day in Figure 57. An eddy forms on the boundary of the NW Shelf

water by day 10 and additional eddies arc seen developing downstream in subsequent

plots. Closed contours on both the pressure and temperature plots from day 90 are in-

dicative of anticyclonic rings forming near 512 km and 1024 km alongshore. These rings

pinch-off the offshore meander, trap warm NW Shelf origin water, and then move off-

shore.

a. Energy Analysis

Time scries of total kinetic and available potential energy over the entire

domain are shown in Figure 66. Since, after the initial geostrophic adjustment by the

model, the kinetic energy becomes quasi-steady during days 30 to 60 before steadily

growing again, days 30 to 40 were chosen for more detailed analysis. Over the same

period, available potential energy is quasi-steady over days 30 to 40 and then decreases.

The energy transfer plots in Figure 67 show strong transfers between the

mean and eddy available potential energy, and strong barotropic transfer, all at the

equatorward end of the domain. A comparison between the u velocity component fields

on days 30 and 40 in Figure 58 shows that eddy generation has occurred further

poleward than shown in the transfers in Figure 67. The transfers shown in Figure 67

are much stronger than those leading to eddy development further downstream so that

the downstream transfers fail to show at the contour interval used.
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Figure 62. Case 3. Surface velocity and temperature fields, days 100 - 110: As for

Figure 57.

98



U at day 120 depth
1280

V at day 120 depth T at day 120 depth

v

)

12HO

576 384 192

Distance (km)
contour interval = 10.

U at day 130 depth

576 384 192

Distance (km)
contour interval = 20.

"cCy>h
1280

V at day 130 depth

U
1280

576 384 192

Distance (km)
contour interval = 1.0

T at day 130 depth
1280

1024

576 384 192

Distance (km)
contour interval = 10.

576 384 192

Distance (km)
contour interval = 20.

576 384 192

Distance (km)
contour interval = 1.0

Figure 63. Case 3. Surface velocity and temperature fields, days 120 - 130: As for
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Figure 64. Case 3. Surface velocity and temperature fields, days 140 - 150: As for
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Figure 65. Case 3. Surface velocity and temperature fields, day 160: As for Figure

57.

An energy transfer diagram was calculated for a region extending 90 km

offshore between 520 km and 700 km alongshore. The transfers, calculated over the

upper five layers are shown in Figure 68. The baroclinicity is clearly important but the

large negative barotropic transfer indicates no net barotropic contribution over the re-

gion. As in Case 1 the 90 km offshore domain is divided into regions to localize the

baroclinic and barotropic contributions. Figure 69 shows that for the inshore 45 km,

baroclinic instability is stronger as is the negative barotropic transfer. Over the region

extending from 45 km to 90 km offshore the baroclinic contribution is weaker and

stronger barotropic instability is observed.

b. Spectral Analysis

The spectral energy plots at days 30, 40, 50 for Case 3 arc given in Figtires

71, 72 and 73 respectively. 1 he strong growth from days 30 to 40 is seen in the peak

developing at a 180 km wavelength (alongshore wavenumber of ~ 0.0055 km '). Smaller

peaks are also apparent at 100 km (alongshore wavenumber of ~ 0.01 km '). and 65 km

(alongshore wavenumber of ~ 0.015 km '). scales. From days 40 to 50 the three distinct
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Figure 69. Case 3. Energy transfer diagram: As for Figure 68 (or the same

alongshore region but now extending only 45 km ofl'shorc.
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Figure 70. Case 3. Energy transfer diagram: As lor Figure 68 for the same

alongshore region but now extending from 45 km to 90 km ollshore.
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peaks are still apparent with maximum energy again at the 180 km scale. Whereas Case

2 had a single peak and barotropic growth was dominant, both Cases 1 and 3 have

multiple spectral peaks during the eddy generation stage and strong baroclinicity is also

a feature. It appears that when baroclinicity is strong, growth at multiple wavelengths

occurs, possibly coinciding with other internal modes.

The spectral density for the entire 160 days of Case 3 is shown in Figure 74.

The dominant scale of 180 km appears to broaden with time and a shift to larger scales

is seen. To isolate the scales of generation and growth, a second spectral analysis was

done over the inshore 90 km of the model, coinciding with the generation region. The

spectral time series for the inshore region, corresponding to the current, is in Figure 75

and for the remainder of the domain in Figure 76. Inshore, the wavelength of the

dominant growth in the vicinity of the current is near 180 km, (alongshore wavenumbcr

of ~ 0.0055 km~ x

). and a secondary maxima occurs at 125 km. (alongshore wavenumbcr

of ~ 0.008 km' 1
). Away from the core, Figure 76 shows that the 180 km wavelength is

dominant and that a shift to longer wavelengths occurs with time.

Comparing the results of the spectral analysis from Cases 2 and 3, the ef-

fects of the addition of NW Shelf water may be determined. In the mainly barotropic

Case 2, eddy generation and subsequent growth was at a wavelength of approximately

150 km. With the inclusion of the NW Shelf water, and its strong baroclinic contrib-

ution toward instability, the main growth occurs at 180 km. The NW Shelf waters ap-

pear to increase the scale at which the dominant eddy growth occurs by modifying the

thermal structure in the inshore region.

c. Jlistability Analysis

Figure 77 is used to confirm that the necessary and sufficient conditions for

the observed eddy generation are satisfied. In particular, the cross-shore derivative of

potential vorticity changes sign inshore and its product with the mean alongshore How

is clearly positive at some location in the domain, which satisfies the necessary condi-

tions for baroclinic instability. The vertical and horizontal shears in alongshore velocity,

which provide an energy source for the eddy generation are apparent from Figure 77 (b).

The Rossby radius of deformation was calculated for the region of instabil-

ity as 27.9 km. Comparing this value with that of Case 2 (27.6 km), little change has

occurred to the radius of deformation despite the inclusion of the NW Shelf waters.

d. Conclusion

I he current, driven by a combination of Indian Ocean and NW Shelf ther-

mal forcing, is much more vigorous and unstable than Case 2. forced by the Indian
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Day 30: Region (1 = 1 , 64; J = 1 , 64; K = 1 , 5 )
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Figure 77, Case 3. Cross sections of dq dx and alongshore velocity: As for Figure

53. "lime averaging is now over th;.^ 30-40 and the cross-section at

alongshore distance 600 km. Contour intervals arc (a) 0.1 "Cm x

s
'

aiw - 5 cms~ l
.
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Ocean alone. Barotropic instability is strong at the equatorward end. near the source

of the N\V Shelf waters. The addition of the N\V Shelf waters adds strongly to the

baroclinicity of the current inshore, although the Rossby radius remains virtually un-

changed. The barotropic contribution at the offshore edge of the core of the current is

also slightly increased by the presence of the NW Shelf waters. The dominant scale of

eddy generation in the current is ISO km. This is consistent with the calculated Rossby

radius of ~2S km. in the strongly baroclinic flow. Away from the current a spectral shift

toward longer wavelengths is seen, consistent with the growth of eddies as they move

offshore.

4. Case 4. Forcing by Indian Ocean and Winds

The time series of surface dynamic heights (pressure) is shown in Figures 78 to

80. The pressure fields are similar to those of Case 2 and indicate a generally weak

poleward flow increasing in strength poleward where it is fed by onshore geostrophic

inflow. More specific detail on the characteristics of the flow is disccrnable in the time

series of surface velocity components and temperature in Figures 81 to 89. The major

effect of the wind is seen offshore where the uniform onshore flow seen in Case 2 (Fig-

ures 36 to 44) is modified by the wind forcing. Inshore, the changes are more subtle.

The strongest eddy development is again found at the poleward end of the domain, and

is in almost the same location as in Case 2. Comparing Figures 40 and 78, the eddy is

stronger in Case 4 and additional structure is observed inshore between alongshore dis-

tances 512 km and 768 km in Case 4 which can only be attributed to the wind forcing.

Another feature seen for the first time in Case 4 is the elongated region of equatorward

alongshore velocity, seen offshore of the poleward flow starting at the poleward end of

the model at day 100 (Figure 79) and then spreading equatorward.

The temperature fields in Case 4 show far less structure than in Case 2. This is

evidence of the upwelling efiect of the wind forcing which, although weak, is sufficient

to counter the poleward advection of warmer waters from the equatorward end of the

domain.

a. Energy Analysis

The plots of kinetic energy and available potential energy in Figure 90 show-

both to be nearly constant from day 40 to day 60. As a result this period is chosen for

a more detailed analysis of the instability mechanisms.

The energy transfer plots over days 40 to 60 for Case 4 are shown in Figure

91. As in previous cases, a large transfer between mean and eddy available potential

energy is observed. Comparing subplots (b) and (c) in Figure 90, baroclinicity appears
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Figure 89. Case 4. Surface velocity and temperature fields, day 160: As for Figure

81.

to occur only inshore whilst barotropic transfers occur both inshore and away from the

poleward current.

Two regions were chosen for closer analysis, one between alongshore dis-

tances 700 km and 880 km. extending 90 km offshore, and the second between

alongshore distances 1000 km and 1180 km. between 180 km and 360 km offshore.

From Figure 91. the two regions appear to have different instability mechanisms and

they are in different dynamical regions. The first location is associated with the inshore

current. The second region is away from the current and affected by the Indian Ocean

thermal structure and wind forcing without the presence of the solid boundary. The

energy transfer diagrams for each region arc shown in Figures 92 (inshore) and 93 (off-

shore). Consistent with Figure 91, the inshore region is one of mixed instability but with

the barotropic transfer dominant. In the offshore region the baroclinic transfer is weakly

negative, so that all the instability must be due to barotropic transfer.
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b. Spectral Analysis

Plots of spectral density against alongshore wavenumber for days 40, 50 and

60 are shown in Figures 94, 95 and 96 respectively. The plots show a number of distinct

energy peaks, the major two being a broad peak between centered near 385 km

(alongshore wavenumber of— 0.0026 km '), and a narrower peak at a wavelength near

180 km. (alongshore wavenumber of~ 0.0055 km~ }

).

As the energetics appear to be different in the inshore than in the offshore

part of the model domain, the time series arc presented in several figures. Figure 97

shows the spectra over the entire domain, Figure 98 over only the inshore 90 km corre-

sponding to the current, and Figure 99 the offshore region not included in Figure 98.

Over the entire model domain (Figure 97), two dominant wavelengths at which growth

occurs are observed, one near 385 km and the second at approximately 180 km. In the

inshore domain (figure 98), both peaks arc disccrnablc but the 385 km wavelength is

dominant and the 180 km wavelength is very weak. In the offshore region (Figure 99)

both spectral peaks are strong but the longer wavelength is still the strongest.

A comparison may now be made with Case 2 in which a single dominant

growth scale of around 150 km was observed. The addition of wind forcing, in the ab-

sence of the NW Shelf waters, leads to a new scale at which eddies develop in the current

of approximately 385 km. Away from the poleward (low, the wind forcing leads to eddy

growth due to barotropic instability at the shorter wavelength of 180 km.

C Instability Analysis

Figures 100 and 101 are used to consider the necessary and sufficient con-

ditions and may indicate why no baroclinic instability is observed offshore. Inshore

(I igure 100 a), the change of sign in the cross-shore potential vorticity gradient occurs

at depths of 4(H) m to 500 m. with the strongest gradient a distance of 20 km offshore.

I he corresponding alongshore cross-section has a negative alongshore velocity below

200 m, which, when combined with the cross-shore gradient of potential vorticity meets

the second necessary condition of baroclinic instability, given earlier, figure 100(b) also

shows the vertical and horizontal shears in the alongshore flow which provide a source

of energy for the instability. For the offshore region, Figure 101(a) shows the change

of sign in the cross-shore gradient of potential vorticity extending across the region,

generally between 200 m and 500 m. 1 he cross-section of alongshore velocity (figure

in 1 b) shows a positive (poleward flow) extending below 1000 m, hence the necessary

conditions arc satisfied. In considering the sufficient conditions however, the vertical

and horizontal shears are both weak. For a purely meridional flow, no critical vertical
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Day 40. Region (1 = 1, 64; J = 1 , 64; K = 1 , 5 )
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Figure 94. Case 4. Spectral density at day 40: Spectral density versus alongshore
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Day 50: Region (1 = 1,6-1; J = 1 , 64; K = 1 , 5 )
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Figure 95. Case 4. Spectral density at day 50: As for Figure 94 but at day 50.
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Region (1 = 1. 64; .1 = 1,6-1. K = 1 , 5 )
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Figure 97. Case 4. Spectral density time series.: The time scries of spectral den-

sity from days to 160 over the entire domain. Note: the amplitude

of the spectral energy is on a linear scale.
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Figure 98. Case 4. Spectral density time series: As for Figure 97 but confined to

a domain extending 90 km oIFshorc.
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Figure 99. Case 4. Spectral density time series: As lor Figure 97. The domain

is that region not covered by Figure 97.
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shear is required to overcome /? (Olivier, 1987), and the sufficient condition for baroclinic

instability should be satisfied. It is speculated that the cross-shore component of the

mean flow (5 c//i r' to 10 cm s -l from Figures 83 and 84) is sufficiently strong to cause

a stabilizing ft contribution which the weak vertical shear docs not overcome. The

Rossby radius of deformation, calculated for the coastal current regime, using the tem-

perature structure at day 50 is 58.4 km.

d. Conclusions

The combination of the Indian Ocean thermal structure and wind forcing

in a climatological sense corresponds to the austral spring and summer, when the NVV

Shelf waters are not augmenting the Leeuwin Current. In this forcing regime, the How

is still unstable, but, without the NW Shelf waters to provide the baroclinicity,

barotropic instability is stronger. The model generated eddies in the poleward coastal

current are due to mixed instability, at a wavelength of approximately 385 km. This is

consistent with growth at InR^ for the Rossby radius of 58.4 km. Olfshore, away from

the coastal current, wind forcing generates eddies due solely to barotropic instability at

a scale of 180 km.

5. Case 5. Forcing by Indian Ocean, NW Shelf and Winds

The 240 day time series of dynamic height isopleths for the combined forcing

by the Indian Ocean thermal structure, NW Shelf density structure and wind stress is

shown in Figures 102 to 106. A comparison with the cases previously run shows the

inshore region where the poleward current is strongest is most like Case 3. Olfshore, the

wind forcing is dominant and the pressure field is initially most like Case 4.

Figures 107 to 119 present the surface fields of velocity components and tem-

perature for the same time sequence. As in Case 3, the proximity to the source of the

NW Shelf water leads to a rapid development of eddies at the equatorward end of the

domain. The generation region for the eddies spreads poleward and by day 50 instability

is also apparent offshore at the poleward end of the model domain. By day 70 eddies

have started to form inshore at the poleward end of the domain, near the location of the

initial eddy development seen in Case 2 and Case 4.

Comparing Cases 3 and 5, the effect of the wind forcing on the surface temper-

atures can be seen. The generally lower temperatures in Case 5 are consistent with the

effects of wind forcing seen in the earlier comparison between Cases 2 and 4. With

weaker sea surface temperature gradients in Case 5, the formation and existence of rings,

as seen in Case 3 is far less apparent. Rings are still formed in Case 5 but generally there

arc fewer closed contours of both temperature and dynamic height, indicating that an
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Figure 100. Case 4. Cross sections of dq\dx and alongshore velocity: As for Fig-

ure 53. lime averaging is over days 40-60 and the cross-section at

alongshore distance 8<X) km. Contour intervals are (a) 0.1 °Cnr ] s
'

and (b) 2.0 cm s" 1
.
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important effect of the wind forcing is to weaken the eddies through a relaxation of the

sea surface temperature gradient.

The narrow band of equatorward alongshore velocity, seen previously in Case

4 is seen again at the poleward end of the domain at day 80. It then grows with time

and is associated with a trough on the pressure plots from day 140. At day 240 the

alongshore flow at the poleward end of the model, offshore of the narrow coastal cur-

rent, is generally equatorward. This is consistent with observations, with the wind driven

West Australian Current flowing equatorward, and separated from the poleward flowing

Leeuwin Current by an active trough. Whether this feature is due to the forcing mech-

anisms or whether the model has captured another observed feature of the current is

undetermined. A possible explanation is that as the temperature structure is an initial-

ization only and the wind forcing applied at each time step, the wind forcing is beginning

to overwhelm the flow generated by the temperature initializations as time increases.

This would explain why the feature is only observed in Cases 4 and 5, in which wind

forcing is included.

a. Energy Analysis

Despite running the experiment out for 240 days, the kinetic energy and

available potential energy in Case 5 are still not in a steady state. Examination of their

time series in Figure 120 shows several plateau on which the energy analysis may be

applied. The periods selected for more detailed analysis are days 30-40 and 60-70. The

energy transfers will be calculated for each period and the regions of energy generation

during that period analyzed Tor their instability mechanisms.

Figure 121 applies to days 30 to 40 and is very similar to Figure 46 discussed

earlier in Case 2. The influence of the NW Shelf water source region overwhelms the

energy transfers further downstream which are contributing to eddy generation. A

comparison between the cross-shore velocity fields at days 30 and 40 (Figures 108,109

respectively) is used to determine the region of eddy generation. Figure 122 is the energy

transfer diagram for the upper five layers in a region extending 90 km offshore between

alongshore distances 460 km and 640 km. The instability has a mixed baroclinic and

barotropic energy source with baroclinicity dominant. A comparison of Figures 68 and

122 highlights the effect of the wind forcing on eddy generation in that region of the

model. The domains in Cases 3 and 5 are olfset by 60 km but the wind forcing appears

to have made a significant contribution to the barotropic instability in the region.

Energy transfers for the period from day 60 to day 70 are shown in Figure

123. Once acain, the strencth of transfers near the source of the NW Shelf water dom-
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inate the contouring and nothing is seen at the poleward end of the region, which is

where, according to Figure 110, the eddies are developing. The corresponding energy

transfer diagram is in Figure 124. Both baroclinic and barotropic instability are present

with barotropic effects dominant. As baroclinicity in this study has generally been as-

sociated with the presence of NW Shelf water, the effects of NW Shelf water should be

weaker at the poleward end of the current. This is confirmed by the cool temperatures

and weak temperature gradients in Figure 110. In the generation discussion earlier in

this chapter it was determined that the effects of the gcostrophic current driven by the

Indian Ocean temperature field are dominant in this region. Figure 47 showed the in-

stability due to the Indian Ocean to be mainly barotropic while Case 4 showed the ad-

dition of wind forcing contributed to barotropic instability. The strong barotropic

instability in Figure 124 is therefore consistent with earlier findings.

b. Spectral Analysis

'I he plots of spectral density against alongshore wavenumber for days 30 to

70 covering the two periods of instability arc presented in Figures 125 to 129. The

spectral peak associated with growth from day 30 (Figure 125) to day 40 (Figure 126) is
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for Figure 107.
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for Figure 107.
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Figure 117. Case 5. Surface velocity and temperature fields, days 200 - 210: As

for Figure 107.
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Figure 118. Case 5. Surface velocity and temperature fields, days 220 - 230: As
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at a wavelength of 160 km (alongshore wavenumber of ~ 0.0062 km~ l

). and from day

60 (Figure 12S) to day 70 (Figure 129) has broadened and is now centered near 200 km

(alongshore wavenumber of ~ 0.005 km~ l

). Also presented is the spectral density at day

160 (Figure 130) which shows two distinct wavelengths at 330 km (alongshore

wavenumber of ~ 0.003 km '). and 160 km (alongshore wavenumber of ~ 0.006 km~ l

).

This is presented because it corresponds to the final day of Cases 2, 3 and 4.

Figure 131 shows the time scries of spectral density for the 240 days of Case

5, calculated over the upper five layers and the entire domain. Two dominant scales

exist at wavelengths of near 200 km (alongshore wavenumber of ~ 0.005 hrr x

). and 120

km (alongshore wavenumber of ~ 0.00S km~ l
). at the end of the period.

The domain is then broken into two regions, the fust extending 90 km from

the coastal boundary and the second encompassing the remaining area. The spectra for

these two regions are then investigated to determine whether either energy scale is as-

sociated with a specific regime. Figure 132 applies to the coastal region and Figure 133

the remaininc area. The two scales arc seen in both domains with the smaller vvave-

160



KINETIC ENERGY
Cose 5 (10 + NW Shelf + Wind)

All Loye r3

1500 -|

woo

Time (days)

AVAIL^B̂ FQlENJjALjNERGY^
Cose 5 (10 + NW Shelf + Wind )

All Lovers

3500 l

3000-/^*^^»-~^~~\ /
2500- ^-*_»^

c
u
0)
Ui

»_ 2000

^5,

K
150C-

1000-

500-

0- 1 1 i 1 1 1 1 1 'ill
10 20 30 <0 50 60 70 BO 90 100 110 120 UO 140 150 ICO 170 180 180 200 210 220 230 2*0

Tims (days)

Figure 120. Case 5. Energy time series: Total kinetic and available potential en-

ergy (cm 2 5 1
) summed over all layers and the entire domain.

161



(a)

1132

1074

Blfl

7Bfl

B*C

an ••

384

K
we-

es \fe

u
576 384 192

(b)

Distinct (km)

(c)

o

Distartce (krn)

E

5 'fl 3A4 102

Distance (km)

Distance (km)

Figure 121. Case 5. Energy transfers - days 30 to 40: Energy transfers from (a) P

to /", (b) /" to A'' and (c) K to K' in units of ergs cm-3
s '. Transfers

are averaged over days 30-4') and summed o\cr the upper five layers.

Contour interval is 4.0 x 10 3 ergs cm* s\ Subplot (d) is the cross-

shore velocity component at day 40. Contour interval is 5.0 cms *.

162



/' /"

4927.9 h 60.3
131.5 r

i i

284.7
•

34.3

«r

936.0 k 68.9
17.5 r

K

.

K'

Figure 122. Case 5. Energy transfer diagram - days 30 (o 40: The energy transfer

diagram for upper five layers for the region between alongshore dis-

tances 460 km and 640 km. extending 90 km offshore. Units for P,

K, /''and A.'' arc ergs air3
, and transfers are in units of

ergs cur- s~ ] x 10 6
.

163



(a)

1137

1074

•it

7«fl

*

040

JO
•

O

J«-4

J3«

158

.CO

Ee

1132

10

7*8

B*n

ir?

38-t

7M

vn •

J7s J84 107

Distance (km) Distance (km)

(c)

E

Distance (Wm)

378 384

Distance (km)

Figure 123. Case 5. Energy transfers - davs 60 to 70: As for Figure 121. Subplot

(d) is now at day 70.

164



p V

9-18.9 28.8
It) .^1 tV

1 i

1016 36.3

i r

1795.8 8.8
69.4

K

-

K'

Figure 124. Case 5. Energy transfer diagram - days 60 to 70: As for Figure 122

for the upper live layers for the region between alongshore distances

980 km and 1 160 km, extending 90 km ollshorc.

165



length scale more common in the inshore region associated with the current. Examina-

tion of Figure 132 shows growth at scales of 155 km (alongshore wavenumber of ~

0.0065 km~ l
). from day 60 then shifting to the 120 km scale by day 240. The second

peak in Figure 132 develops at a wavelength around 330 km (alongshore wavenumber

of ~ 0.003 km 1

), then shifts towards a 200 km wavelength scale. This shift to smaller

wavelengths may be associated with an increased barotropic contribution to instability

as the forcing due to the temperature initializations decreases whilst the wind forcing is

maintained at each time step. The scale of unstable development offshore is seen in

Figure 133. Comparing this figure with Figure 132, the spectral energy is much lower

as the features apparently form later offshore. The initial growth is near a scale of ISO

km (alongshore wavenumber of ~ 0.0055 knr {

). which was the same scale associated

with offshore development in Case 4, when no N\V Shelf water was present. 'I he olf-

shore eddy scales at the end of the experiment are the same (120 km and 200 km as

found inshore).

c. Instability Analysis

Figures 134 and 135 contain the plots of the cross-shore derivative of po-

tential vorticity (a) and the mean alongshore velocity (b) for days 30-40 and 60-70 re-

spectively. The necessary conditions are clearly satisfied for both regions for their

respective periods, dqjdx changes sign and has a positive product with the alongshore

component of velocity in each case, and strong horizontal and vertical gradients provide

a large source of energy for the unstable growth. The Rossby radius, calculated from

the thermal structure in the current at day 40 is 25.6 km. Based on these radii, the ex-

pected wavelength of maximum growth is around 160 km, which compares well with the

spectral density maximum at 155 km, seen for the same period and location in Figure

132.

d. Conclusions

'1 he forcing of the Lecuwin Current by the Indian Ocean and NW Shelf

density fields along with the mean wind stress creates an unstable current with mixed

instability. Baroclinic instability is dominant inshore in the middle of the domain and

weakens as the elfccts of the NW Shelf water lessen poleward. The barotropic instability

is strongest in the immediate vicinity of the NW Shelf waters at the equatorward end

of the domain. The barotropic contribution is also strong where the combined elfccts

of the Indian Ocean and wind forcing are stronger than the NW Shelf waters, such as

at the poleward end of the region. Two distinct wavelength scales arc present. Initial

erowth inshore is at wavelengths of 155 km and 330 km and bv dav 160, both wave-
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Day 30: Region (1=1. 6<1; J = 1 . 64; K = 1 , 5 )
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Tigure 125. Case 5. Spectral density at day 30: Spectral density versus

alongshore wavenumber at day 30. I he wavenumber has been scaled

by —— and so is an inverse wavelength. A logarithmic scale is used
In

for the spectral energy.
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Day 40: Region (1=1, 64; J = 1 . 64; K = 1 . 5 )
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Figure 126. Case 5. Spectral density at day 40: As for Figure 125 but at day 40.
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Figure 127. Case 5. Spectral density at day 50: As for Figure 125 but at day 50.
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Figure 128. Case 5. Spectral density at day 60: As for Figure 125 but at day 60.
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Doy 70: Region (I = 1 , 64; J = 1 , M; K = 1 . 5 )
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Figure 129. Case 5. Spectral density at day 70: As for Figure 125 but at day 70.
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Day 160: Region (1=1. 64; J = 1 . 64; K = 1 , 5 )
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Figure 130. Case 5. Spectral density at day 160: As for figure 125 but at day

160.
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RcHjion (I = I ,64; J = 1 ,64; K = 1 , 5 )

f «

r- o

Figure 131. Case 5. Spectral density time series: I he time series of spectral den-

sity from days to 160 over the entire domain. Note: the amplitude

of the spectral energy is on a linear scale.
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Reyion (I = 55 . 64; J = 1 . 64; K = 1 . 5 )

'O J

Figure 132. Case 5. Spectral density time scries: As for Figure 131 but in a re-

gion extending 90 km oil shore.
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Figure 133. Case 5. Spectral density time series: As for Figure 131. The domain

is the offshore region not covered by Figure 132.
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Ciois -y.or» disln'K"M

Figure 134. Case 5. Cross sections of dqjdx and alongshore velocity: As for Fig-

ure 53. Time averaging is over days 30-40 and the cross-section at

alongshore distance 540 km. Contour intervals are (a) 0.1 "Cm ' ,r'

and (b) 5.0 cms '.
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Figure 135. Case 5. Cross sections of dqjd.x and alongshore velocity: As for Fig-

ure 53. lime averaging is over clays 60-70 and the cross-section at

alongshore distance 1060 km. Contour intervals are (a) 0.1 °C nr [ s_l

and (b) 5.0 cm s '.
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lengths arc still dominant. The offshore advection and growth of the shorter scale in-

stability is seen in Figure 133 from day 120. At day 240 the dominant scales, both

inshore and offshore are at around 120 km and 200 km. The observed shift towards

shorter scales with time is considered to be due to the wind forcing overwhelming the

density initializations. This creates instability which is predominantly barotropic and

hence grows at a smaller scale than instability due to baroclinicity which was dominant

during the early stages of eddy growth.
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VI. SUMMARY AND RECOMMENDATIONS

A. SUMMARY
A full primitive equation (PE) model was initialized with climatological data to in-

vestigate the generation and stability of the Leeuwin Current. Initialization was done

using climatological mean densities for the Indian Ocean and N\V Shelf for the austral

autumn and winter, which corresponds to the observed period of strongest (low, and a

representative mean wind forcing applied to some experiments. The current generated

by the model was assessed by making comparisons with observational data collected

during LUCIE and determining the contribution to the current due to the Indian Ocean

temperature field, NW Shelf density field and wind forcing. The current generated by

the model was unstable in each of the four experiments in which climatological initial-

ization and forcing was used and mesoscale features were observed. A series of analysis

techniques used to determine the instability mechanisms was evaluated with a test ex-

periment in which the model was initialized with the mean velocity and temperature

structure of the current observed at its maximum strength. The analysis techniques were

then applied to each of the climatologically forced experiments and the instability

mechanisms and dominant length scales determined. A summary of the results from

each the two phases of this study, generation and instability, is presented below.

1. Leeuwin Current Generation

1. The Indian Ocean temperature structure is sufficient to drive an unstable

poleward surface flow and an cquatorward undercurrent. The surface current is aug-

mented by onshore geostrophic inflow and accelerates downstream, into the prevailing

wind.

2. The climatological mean wind forcing is stronger at the equatorward end of

the domain than the geostrophic pressure gradient forcing of the Indian Ocean thermal

field. The efiect of the wind is to strengthen the poleward alongshore (low and to reverse

the geostrophic onshore flow, creating a weak upwelling regime, more typical of other

eastern boundary currents.

3. The mean wind stress decreases in the latitude range 25 to 30°S. Coupled

with an increase in the strength of the geostrophic flow driven by the Indian Ocean stcric

height gradient, the wind driven current becomes weaker than the density driven current

at some point near the centre of the domain.
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4. South of 30°S, the density driven current, augmented by inflow from the In-

dian Ocean, is much stronger than the Ekman transport, despite stronger winds.

5. I he inclusion of NW Shelf waters strengthens the inshore, alongshore den-

sity gradient and increases the magnitude of both the poleward surface current and the

equatorward undercurrent. The effects of the NW Shelf waters completely dominate the

flows driven by the Indian Ocean and the wind stress at the equatorward end of the

domain. Further poleward, the NW shelf contribution decreases as the warm waters

advected poleward are countered by upwelling due to the wind forcing.

6. The current generated by the model generally compares well with LUCIE

observations, particularly in relation to the strength and vertical structure of the

alongshore surface current and undercurrent.

2. Instability and Eddies

7. The current driven by the Indian Ocean temperature gradient is unstable with

a mixed source of eddy instability. At the poleward end of the domain, barotropic in-

stability is dominant and eddy generation occurs on the offshore side of the core of the

current with a wavelength of 150 km.

8. The addition of the NW Shelf waters creates a far more energetic and un-

stable current. The NW Shelf waters increase the vertical shear by strengthening the

surface flow and the undercurrent, and hence add to the baroclinicity of the current.

The NW Shelf waters also locally increase the barotropic instability near their source

region. The dominant wavelength associated with eddies developing in the current

forced by the Indian Ocean and NW Shelf water density fields is 180 km.

9. The combination of the Indian Ocean thermal forcing and the wind stress,

which corresponds to the forcing regime observed during the austral spring and summer

leads to eddy formation on the offshore edge of the poleward jet with a dominant

wavelength of 385 km. The wind forcing acting away from the coastal boundary also

generates eddies, but at a scale of 180 km. Barotropic instability is dominant in both

regions with a weak baroclinic contribution in the core of the current.

10. The combined effect of the three forcing mechanisms, corresponding to the

austral fall and autumn when the Leeuwin Current is strongest, is to generate a vigorous

current with instability at two dominant wavelengths: 155 km and 330 km. These

wavelengths agree well with available observations. 1 he instability is again mixed. 'I he

current is baroclinically unstable over its entire range, with the baroclinicity weakening

away from the NW Shelf water source region. The barotropic contribution is strongest

at the poleward end of the domain where geostrophic (low and wind forcing are strong-
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est. The NW Shelf water also increases the barotropic instability in the vicinity of its

source region.

11. A summary of the experiments along with the Rossby radius of deforma-

tion, the dominant instability mechanism and the scale of the dominant wavelength is

given in Table 12. The Rossby radius is calculated in the location of the eddy growth

for the growth period as listed. Hence, for example, Case 4 (inshore) is at alongshore

distance 800 km whereas Case 5 (inshore) is at alongshore distance 550 km. The spectral

analysis requires that the entire alongshore extent of the domain be used to determine

the scale of dominant growth. In Case 5 (inshore) therefore, the two scales may be due

to eddy growth at two scales at different alongshore locations. The 155 km scale appears

to coincide with the strongly baroclinic inbstability at alongshore distance 550 km. at

which point the Rossby radius is 26.3 km. The 330 km scale is most likely to be found

at the poleward end of the domain where the effects of the NW Shelf water arc weak

and, as seen in Case 4 (inshore), the wind mixing creates an entirely different

stratification with Rossby radius around twice that found where the effects of wind

forcing are weak.

Table 12. SUMMARY OF EDDY INSTABILITY AND GROWTH

Case
Duration
(days)

Eddy
Growth
(day)

Rd (km) Scale(km) Instability

1 40 1-10 21.9 135
Mixed (BC
dominant)

2 1 60 70-90 27.6 150
Mixed (BT
dominant)

3 160 30-40 27.9 ISO Baroclinic

4(inshore) 1 60 40-60 58.4 3S5
Mixed (BT
dominant)

4( offshore) 16<> 40-60 33.0 ISO Barotropic

5(inshore) 240 30-40 26.3 155 & 330
Mixed (BC
dominant)

5(offshore) 240 100-110 33.0 1 SO
Mixed (BT
dominant)
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B. RECOMMENDATIONS
This study has shown that the Leeuwin Current can be successfully modeled using

a PE model forced by the mean climatology. Contrary to the findings of Weaver and

Middleton (1989), a shelf is not required in the model to produce and maintain the cur-

rent. The mesoscale features which have been missing from previous modeling studies

are produced by the model and at scales comparable with observations. Thus, the ob-

jectives of the study have been successfully attained.

This study should now form the basis for a scries of ongoing studies. It is recom-

mended that a southern hemisphere version of the model be developed and dedicated to

the Leeuwin Current. Time dependent forcing would allow the model to spin up to

steady state and also allow more realistic forcing than the climatological mean used in

this study. The use of a smooth function to define spatial variations in the wind forcing

is also recommended.

Additional research topics which are suggested for investigation arc:

a. annual variability in the Leeuwin Current due to El Nino events (with the Pacific

to Indian Ocean throughllow providing the link);

b. the triggering mechanism for the release ofNW Shelf waters and the onset of the

strong fall winter Leeuwin Current; and

c. the Leeuwin Current extension to the south of Australia.
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APPENDIX A. VALUES OF CONSTANTS USED IN THE MODEL

VALUE DEFINITION

c 0.958 cal gm-\K)~ x specific heat of sea water

cD 1.2 x 10- 3 drag coefficient

/'n 278.2 A' constant reference temperature

Pc 1.23 x 10 * gm cm* density of air

P<3 l."276 gm cm 1 density of sea water at T

a 2.01 x 10"4
( K) thermal expansion coellicicnt

K 10 number of levels in vertical

Ax 9 x Wan cross-shore grid spacing

&y 2 x lOYm alongshore grid spacing

D 4.5 x Won ocean depth

At 800 s time step

g 980 cms- 3 gravitational acceleration

A,
t

2 x Warts- 1 biharmonic momentum diffusion coefficient

A, 2 x Warts- 1 biharmonic heat diffusion coefficient

KM 0.5 c/>/
3 5_l vertical eddy viscosity

KH 0.5 cm7 s ' vertical eddy conductivity

S3
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